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Abstract

We show that central banks face a time inconsistency problem when publishing bank stress

test results. Before a stress test, they want to appear tough as the threat of letting banks fail

the stress test incentivizes prudent behaviour. After the stress test, they want to act soft by

releasing only partial information in order to reassure financial markets about bank health. We

characterize an institutional design solution to this commitment problem: a social planner sets the

framework within which the central bank communicates. We find that a hurdle rate framework,

where all banks are judged to pass or fail relative to a common threshold, is optimal in many

settings as it generates intermediate levels of both incentives and reassurance. With a hurdle

rate framework, stress tests become an informational contagion channel, as changes in the health

of one bank affect beliefs about the health of other banks. Thus, informational contagion can be

a feature of a socially optimal institutional design in the presence of a time inconsistency problem.
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1 Introduction

“Had we been fully open and fully transparent about what was going on during the financial crisis,

it would, let me tell you, have been a lot, lot worse. That would have been shouting ‘fire’ in the

theatre.”

— Andy Haldane, Chief Economist, Bank of England1

“The stress test has been a catalyst for pressure to raise capital.”

— Andrea Enria, Chair of the ECB Supervisory Board2

Following the recent financial crisis, the frequent publication of bank stress test results has

become the centrepiece of central bank communication about bank stability. While central banks

view the communication of bank stress tests as serving two purposes – incentivize banks to take

prudent actions and reassure financial markets about bank stability – the optimal stress test

design literature has largely focused on the latter (Goldstein and Leitner, 2018; Inostroza and

Pavan, 2018).

This paper studies stress tests as serving both purposes. We find that a trade-off between

these two purposes exists and that they create a time inconsistency problem which results in

suboptimal combinations of incentives and reassurance. The trade-off arises because incentives

for banks to improve their health are created by the central bank’s threat to reveal bank weakness,

which to financial markets is the opposite of a reassuring message. Additionally, these two roles

create a time-inconsistency problem: Before the stress test, when banks decide whether to take

prudent actions, the central bank wants to appear tough, i.e. create a threat of revealing bank

weakness. After the test, when banks cannot alter their health anymore, the central bank wants

to act soft, i.e. not reveal bank weakness. Rational agents anticipate this. Banks know that the

threat is not credible and therefore do not take prudent actions.

We propose an institutional design solution to this time inconsistency problem. A social

planner chooses an institutional design before banks can take prudent actions. After banks have

taken prudent actions and having observed bank health, the central bank (CB) communicates

stress test results within the constraints set by the institutional design. A design consists of

a communication framework which is either full disclosure, zero disclosure, or a hurdle rate

framework where all banks are judged to pass or fail relative to a common level of stress.3 A

design also specifies the CB’s objective function (henceforth: mandate). This approach echoes

Rogoff’s (1985) work on time inconsistency in monetary policy.

We find that a hurdle rate framework is optimal for a large set of parameters as it provides

an intermediate combination of both incentives and reassurance. A full disclosure framework

1Quoted in The Times, 6 October 2017. Andy Haldane was the Bank of England’s Executive Director for
Financial Stability during the financial crisis.

2Quoted in Financial Times, 15 July 2011. Andrea Enria was Chairperson of the European Banking Authority
from 2011 to 2018.

3A full disclosure framework is currently used in the Euro Area whereas a hurdle rate framework is used by the
Bank of England.
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generates strong incentives but no reassurance. The reverse is true for a zero disclosure framework.

We show that, in a hurdle rate framework, strategic delegation provides additional benefits.

This means the planner maximises ex-ante welfare by setting the CB’s mandate to differ from

ex-post welfare maximisation. The optimal mandate can differ in either direction. If taking

prudent actions has high costs, the planner optimally specifies the CB’s mandate to be “tougher”

than welfare maximisation, so that the CB is less concerned about supporting weak banks than

society. This makes it credible that the CB will reveal bank weakness by letting weak banks fail

the stress test and thus generates strong incentives. If the costs of prudent actions are low, the

optimal mandate is “softer” than welfare maximisation, so that the CB is very concerned about

weak banks. This achieves high reassurance while still generating sufficient incentives to induce

the prudent action.

Stress tests become an informational contagion channel when a hurdle rate framework is

used. This means that changes in the health of one bank affect beliefs about the health of other

banks. Contagion arises because the CB optimally responds to a deterioration in one bank’s

health by adjusting the severity of stress. In some cases, it is optimal for the CB to lower the

severity of stress. All banks pass, but as they pass a weaker test, beliefs about all banks are

lower. More surprisingly, there are also cases where a deterioration in one bank’s health leads to

higher beliefs about other banks. This is the case when the CB increases the severity of stress.

As a result, the weak bank fails the test and beliefs about its health deteriorate. However, beliefs

about other banks improve as they pass a tougher test.

Informational contagion can thus be a feature of an optimal design when a time-inconsistency

problem exists. Contagion need not reduce welfare. The mechanism that turns stress tests into

an informational contagion channel - judging all banks against the same severity of stress - is

the same mechanism that makes a hurdle rate framework optimal for many parameters. For the

CB, using one severity of stress is a constraint. Optimal behaviour given the constraint implies

financial contagion. From the planner’s perspective, this constraint is valuable, as it results in

some but less than full revelation of bank health and thus achieves intermediate levels of both

incentives and reassurance. Without the constraint, there would be no contagion but also no

resolution to the time inconsistency problem.

Our examination of stress tests has broader implications for economic theory. We contribute to

the strategic communication literature by characterizing the equilibrium in a verifiable disclosure

communication game with a cross-message constraint. In these games, the sender communicates

about multiple banks, truthfully releases pass or fail results for each of them, but is constrained

by having to judge all banks relative to a common level of stress, rather than using bank specific

stress levels. The sender therefore faces a trade-off: While higher levels of stress result in more

favourable messages for those banks that pass, they have the cost of more banks failing the test

which is a very unfavourable message.

Our paper also contributes to the literature on incentives generate by communication, which

has commonly been framed in the context of teachers grading exams (Boleslavsky and Cotton,

2015; Dubey and Geanakoplos, 2010). Our model can be reinterpreted in that setting: A class

teacher (central bank) wants to incentivize students (banks) to study for an exam (take a prudent
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action) by threatening to let bad students fail the test. However, once the exam has been taken,

the teacher wants to give out good marks to help students get good jobs. A head teacher (planner)

tries to solve this time inconsistency problem by specifying the school’s grading policy (stress

test design).4

The remainder of this paper is structured as follows: Section 2 reviews the related literature.

Section 3 outlines the model and discusses key assumptions. Section 4 focuses on reassurance.

First, it takes an ex-post perspective and characterises how much reassurance a central bank

achieves for given health outcomes in equilibrium in a given design. For a hurdle rate framework,

this involves solving the verifiable disclosure game with a cross-message constraint. Then, it

takes the planner’s ex-ante perspective and characterises how much reassurance different designs

achieve in expectation, i.e. across possible health outcomes. Section 5 compares designs in terms

of incentives. Section 6 combines incentive and reassurance concerns to solve for the optimal

institutional design. Section 7 shows that a hurdle rate framework implies that stress tests

become an informational contagion channel. Section 8 concludes.

2 Literature Review

This paper is related to three different strands of the literature. Our idea of studying optimal

institutional design solutions to a time inconsistency problem is related to the monetary economics

and particularly the “central bank design” literature (Reis, 2013). Rather than focusing on

a monetary policy maker who is tempted to boost output by creating surprise inflation5 we

focus on a bank regulator tempted to shield weak banks from market pressure by not releasing

information. Our modelling framework for this communication game builds on and contributes

to the theoretical literature on strategic communication. Our topic of bank stress tests is rooted

in the central bank communication literature.

Central Bank design and strategic delegation

Institutional design solutions to the time inconsistency problem in monetary policy range from

strategic delegation to performance contracts. Rogoff (1985) argues that delegating policy to

a “conservative central banker” who places more weight than society on inflation stabilisation

relative to output stabilisation increases welfare. Walsh (1995) uses insights from principal agent

theory to argue that the time inconsistency problem can be reduced by a performance contract

which rewards the central banker for low inflation.

Both institutional design solutions have the common feature that the objective function of

4This paper differs from Boleslavsky and Cotton (2015) in not assuming commitment of the teacher (central
bank) and in focusing on effort of a third party (students, banks) rather than the sender. It differs from Dubey
and Geanakoplos (2010) in focusing on effort prior to and thus in anticipation of communication rather than
afterwards.

5As agents with rational expectations anticipate this temptation, the result is “inflation bias”: an equilibrium
with inflation above target and no output gains (Lucas, 1972, 1975; Kydland and Prescott, 1977; Barro and Gordon,
1983a,b).
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the policy maker which maximises ex-ante welfare differs from ex-post welfare maximisation.6

This is an application of strategic delegation as outlined by Vickers (1985) who shows that in a

strategic context a principal achieves the highest pay-off by delegating to an agent who maximises

an objective function other than the principal’s pay-off.7

This paper contributes to the CB design literature in three ways. We characterise a new

problem by showing that central banks face a time inconsistency when publishing bank stress test

results. To solve this problem, we take CB design and strategic delegation ideas from monetary

policy to the new setting of financial stability and from a focus on policy makers’ actions to

a focus on communication. Our institutional design solution shows that benefits of strategic

delegation exist also in this new setting.

Strategic communication theory

Our communication game builds on models of verifiable disclosure (Grossman and Hart, 1980;

Grossman, 1981; Milgrom, 1981; Guttman et al., 2014; DeMarzo et al., 2019). That means the

sender (central bank) is privately informed and can only make true statements.8 Readers more

familiar with the macroeconomic literature may equally view our model as “communication with

discretion”, i.e. the CB is not able to commit to a communication rule. The opposite case of

“communication with commitment” corresponds to Bayesian persuasion.

We extend verifiable disclosure models to capture communication about multiple items

(banks). In the single item literature, receivers always learn bank health perfectly (Grossman and

Hart, 1980; Grossman, 1981; Milgrom, 1981) unless communication is costly (Jovanovic, 1982;

Verrecchia, 1983) or there is uncertainty on whether the sender is informed (Dye, 1985; Jung

and Kwon, 1988).9 We show that a new departure from the stark result of full revelation can

arise when communication is about multiple items. In our stress test setting, the sender judges

multiple banks to pass or fail relative to the same stress scenarios. While for senders using as

many (or more) stress scenarios as there are banks, there is full revelation in equilibrium, this is

no longer the case when there are fewer stress scenarios than banks. We formalise the resulting

novel verifiable disclosure game where the choice of the stress scenario affects the information

revealed about all banks, i.e. there is a constraint across messages, characterise the equilibria,

and show that all involve partial disclosure.

6In Rogoff (1985), the objective function comes from intrinsic types. In Walsh (1995), it results from a
performance contract.

7Vickers (1985) studies Cournot competition. A firm’s profit increases when decisions are delegated to a
manager who places weight on market share, not just on profits, as this commits the firm to aggressive behaviour
which in turn leads rivals to cut output. Strategic delegation allows the principal to become a Stackelberg leader.

8Alternative classes of communication games are models of cheap talk (Crawford and Sobel, 1982) where
the sender is privately informed but can lie, or Bayesian persuasion (Kamenica and Gentzkow, 2011) where an
uninformed sender commits to a messaging rule before becoming privately informed. A recent survey of the
literature based on commitment is Bergemann and Morris (2019).

9Recent work which builds on these verifiable disclosure models includes Guttman et al. (2014) who study the
timing of disclosure in a multi-period model and DeMarzo et al. (2019) where the sender is initially uninformed,
decides what test to undertake to become informed, and decides on the disclosure of results after observing them.
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Central bank communication

The growing importance of central bank communication as a policy tool is reflected in a vast

literature spanning both monetary policy and financial stability.10 The disclosure of stress test

results is a prominent topic in the latter field. Closely related to our paper are models without

commitment, i.e. where the central bank decides on disclosure after becoming privately informed.

Models with commitment, i.e. where the CB commits to a communication strategy before

becoming privately informed, are a useful comparison.11

Our key contributions to the hitherto small literature on the case without commitment are

that we consider the incentive motive of stress test disclosure in addition to the reassurance

motive and that we model the complexity arising from testing multiple banks simultaneously

with a common stress scenario. Bouvard et al. (2015) consider a regulator who communicates

only because of the reassurance motive and faces a binary choice between full and zero disclosure.

Intermediate levels of informativeness such as a hurdle rate framework are not considered. In

Shapiro and Zeng (2018) a regulator tests one bank repeatedly.

Models with commitment are applications of Bayesian persuasion and include Goldstein and

Leitner (2018) where disclosure destroys risk sharing among banks (Hirshleifer (1971) effect)

and Inostroza and Pavan (2018) who add an explicit model of how receivers coordinate by

introducing additional heterogeneous private information. Faria-e-castro et al. (2016) study how

a government’s fiscal position and disclosure policy interact. Parlatore (2015) views stress tests

as generating private signals in a Diamond and Dybvig (1983) model of bank runs. Orlov et al.

(2017) endogenise the response of asset prices. Williams (2017) considers an extension in which

banks can adjust to the communication rule. He finds that banks reduce their liquidity buffers

when stress tests are conducted since pass results make runs less likely and thus act as substitute

for liquidity buffers. While in Williams (2017) banks respond to a CB which is committed to a

disclosure rule, in our paper banks respond to the anticipated strategic communication of a CB

which cannot commit.12

3 Model

Our model of stress tests distinguishes between the choice of an institutional design (who runs

the test, how granular is the disclosure of results) and the choice of stress severity (e.g. banks are

subjected to a 20% drop in commercial property prices). While the institutional design is chosen

for the long term and is not adjusted to changing economic conditions, the stress severity is

adjusted for every test. Thus, while the choice of stress scenario is subject to a time inconsistency

problem, institutional design choices offer a limited form of commitment.

10Surveys on monetary policy communication include Geraats (2002) and Blinder et al. (2008).
11A broad survey of arguments for and against the disclosure of stress test results is provided by Goldstein and

Sapra (2013).
12While this literature review focused on the disclosure of stress test results, other aspects of stress tests have

also been studied. For example, Parlatore and Philippon (2020) model stress tests as generating information for
an uninformed regulator, not as transmitting information to financial markets. Leitner and Williams (2020) study
the disclosure of stress test models rather than results. Quigley and Walther (2016) study the effect on banks’
incentives to disclose additional information.
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Formally, an institution designer D (welfare maximising social planner) chooses an institu-

tional design. Banks observe the design and decide whether to take a prudent action which makes

high bank health realisations more likely. Bank health is realised (Hi ∈ [0, 1]) and observed

only by the central bank. Then, the CB - bound by the design - chooses a stress scenario and

publishes results truthfully.13 Financial markets receive these messages and update their belief

on bank health (µi) to µi = E[Hi | I] where I is all publicly available information. The sequence

of moves is summarised in Figure 1 below:

Figure 1: Order of Moves

| | | | |

D publicly chooses
institution design

Banks choose
effort privately

Nature draws
bank health,
CB observes it

CB sends
truthful message

Financial markets
receive the message

and update their prior

3.1 Description of the Model

At the first stage, designer D chooses an institutional design D = {C,M} which consists of

a communication framework C and a mandate for the central bank M. The communication

framework specifies the number of stress scenarios the CB will use, but not their severity. In our

model, which studies communication about two banks, there are three types of frameworks.14

In a framework with zero scenarios, the CB never releases information. We term this the

Zero Disclosure Framework (ZDF). A framework with one stress scenario is called Hurdle Rate

Framework (HRF).15 In a framework with two or more stress scenarios, markets learn both

banks’ health perfectly in every equilibrium. While this result for two or more scenarios is, to

the best of our knowledge, a novel result (we provide a formal treatment and proofs in Appendix

A), in the remainder of the paper we adopt reduced form language and refer to these frameworks

as Full Disclosure Frameworks (FDF).16 A mandate M is a mapping from a pair of beliefs about

bank health (µ1, µ2) ∈ [0, 1]2 to a value on the real line V ∈ R1, i.e. M : (µ1, µ2) → V . The

designer maximises welfare W : (µ1, µ2)→W where W ∈ R1.17 D becomes public knowledge.

Banks decide simultaneously whether to take a private prudent action, e.g. improve risk

13We model the design and stress severity choices as made by different agents (D and CB) to be able to capture
gains from strategic delegation. In practice, D and CB could be different committees of the same regulatory
authority.

14A model with two banks is the simplest possible model which allows us to study stress tests as revealing
information on multiple banks simultaneously.

15In models with one dimensional bank health, the following two ways of thinking about stress tests are equivalent:
A bank passes a stress test of severity s = 0.5 if stressed health H̃i = Hi − s satisfies H̃i > 0. A bank passes a
stress test if its health is sufficiently high Hi > s, i.e. clears the hurdle set by s.

16More generally, our institutional design results apply for any communication rule ZDF (FDF) which results in
markets learning nothing (bank health perfectly), not just for communication rules which judge banks relative to
common stress scenarios.

17The reduced form approach of specifying pay-offs in terms of beliefs is standard in the literature (Guttman et
al., 2014; DeMarzo et al., 2019).
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management practices. In line with the moral hazard literature, we formalise this as a choice

between between high and low effort ei ∈ {l, h} where high effort is costly C(h) > C(l) and

makes higher health realisations more likely in a monotone likelihood ratio property (MLRP)

sense.18 The bank maximises expected profit E[π] = E[µi]− C(ei). A bank’s strategy is thus:

Bi : D → ei.

Bank health realisations Hi are drawn by nature from the distributions implied by ei and

observed only by the central bank, not by financial markets. Bank health is independent across

banks.

The central bank observes bank health Hi ∀ i and, within the framework C, conducts a stress

test to maximise its mandate M. In ZDF (FDF) financial markets learn nothing (bank health

perfectly) for any mandateM. In HRF, the central bank chooses a level of stress s strategically to

maximise its mandate M and must report truthfully whether each bank passed or failed relative

to the common stress s, which is also reported. The resulting message is a triplet {s, o1, o2}
where s ∈ [0, 1] and oi ∈ {p, f} is the outcome for bank Bi. For example {0.2, p, f} corresponds

to “Stress was 0.2 and B1 passed while B2 failed.”. This does not only reveal the number of pass

and fail marks but also reveals which bank passed or failed.

In the hurdle rate communication game, where we treat D and e1, e2 as exogenously fixed, a

central bank’s messaging rule S is a mapping from any health state pair (H1, H2) ∈ [0, 1]2 to

a message {s, o1, o2} ∈ [0, 1]4 subject to the truth-telling constraint that oi = p if and only if

Hi ≥ s, otherwise oi = f , i.e. S : (H1, H2) → {s, o1, o2}. The sender cannot lie, but he could

obfuscate by sending a universally true message such as {0, p, p}. In the overall institutional

design game, the central bank’s strategy S is a profile of such messaging rules, i.e. S : D → S.

Financial markets do not observe bank health Hi directly but observe the CB’s message

{s, o1, o2} and update their prior belief accordingly to µi = E[Hi | I].19 Financial market

participants are interested in bank health because they trade bank shares and credit default

swaps or because they assess the risk of interbank loans. In the pure communication game, we

say that financial markets follow an interpretation rule R : {s, o1, o2} → (µ1, µ2). In the overall

institutional design game, financial market’s strategy R specifies an R for every design D, i.e.

R : D → R. Based on the beliefs (µ1, µ2) pay-offs are realised.

3.2 Equilibrium Concept

We focus on perfect Bayesian equilibria (PBE) as solution concept. This means that we restrict

our attention to those weak perfect Bayesian equilibria of the overall institutional design game

which are weak perfect Bayesian equilibria in every subgame. We first define weak PBE in an

important subgame, the hurdle rate communication game, and then define PBE in the overall

18The MLRP assumption, introduced by Milgrom (1981), is common both in the moral hazard literature
(Holmstrom, 1982; Lambert, 1983) and in the communication literature (Ottaviani and Sorensen, 2006; DeMarzo
et al., 2019).

19Summarizing beliefs by the expected value is in line with the communication literature (Guttman et al., 2014;
DeMarzo et al., 2019) and the stress test literature (Goldstein and Leitner, 2018). It can be microfounded by
financial market participants being risk neutral and trading an asset in a competitive market, or by participants
solving a quadratic loss problem.
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institutional design game.

Definition 1 An equilibrium of the hurdle rate communication game is a collection {S,R} that

satisfies:

(i) Given R; S maximises V (µ1, µ2) at every health state pair (H1, H2).

(ii) µi = E[Hi | {s, o1, o2}, S] ∀ i

Condition (ii) states that R uses all available information {s, o1, o2} and interprets it based

on the equilibrium messaging strategy S.

Definition 2 An equilibrium of the overall institutional design game is a collection of strategy

profiles {D,B1,B2,S,R} that satisfy

(i) Given B1,B2,S,R; D maximises E[W (µ1, µ2)].

(ii) For every D and given B−i, S, R; Bi maximises E[πi].

(iii) For every D and given B1,B2,R; S maximises V (µ1, µ2) at every health state pair (H1, H2).

(iv) µi = E[Hi | {s, o1, o2},D,B1,B2,S] ∀ i

Condition (iv) states that R uses all available information {s, o1, o2} and interprets it based

on all player’s equilibrium strategies.

3.3 Assumptions

Welfare To capture the reassurance and incentive motive of stress tests, we assume that welfare is

increasing in beliefs about bank health (∂W∂µi > 0∀i) and is particularly concerned with the weak

bank as the risks of belief driven phenomena such as runs, higher funding costs, or problems to

roll over short term debt are particularly acute for weak banks. Thus, we assume that welfare is

concave. We assume that banks enter welfare symmetrically W (α, β) = W (β, α). An example

welfare function is W (µ1, µ2) = λ min(µ1, µ2)+(1−λ) µ1+µ2
2 where λ ∈ [0, 1[ indexes the concern

for the weak bank.20

Mandate The mandate is endogenously chosen by the designer. The mandate need not be

identical to welfare but we restrict our attention to the same set of functions. Thus, as example

we let V (µ1, µ2) = ω min(µ1, µ2) + (1− ω) µ1+µ2
2 where ω ∈ [0, 1[. We refer to the CB as being

“tougher” than welfare if ω < λ.

Bank’s action Our assumption that the prudent action improves the bank health distribution

according to MLRP has implications for how stress test outcomes are interpreted and for how

20While fundamentals do not enter welfare directly, they enter indirectly via beliefs µi. High expected beliefs
E[µi] increase welfare and only arise in equilibrium if expected fundamentals E[Hi] are high. This follows from the
equilibrium property of Bayesian beliefs that E[µi] = E[Hi] which is called ‘Bayes plausibility’.
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the interpretation depends on financial market’s conjecture about the bank’s effort choice. Let

low effort lead to CDF G(H) and high effort to F (H).21 The MLRP assumption is equivalent to

assuming that for every subinterval [a, b] with 0 ≤ a ≤ b ≤ 1 the conditional distribution can

be ranked according to first-order stochastic dominance (Shaked and Shanthikumar, 2007) and

therefore implies that:

EG[H | a ≤ H ≤ b] ≤ EF [H | a ≤ H ≤ b] ∀ 0 ≤ a ≤ b ≤ 1 (1)

Thus, when financial markets learn that Hi ∈ [a, b], the resulting belief µi is higher when

financial markets conjecture that the bank exerted high effort.22

Central bank: no commitment, information We assume that the Central Bank chooses the

level of stress strategically after observing bank health and reports results truthfully. The

assumption that the CB cannot commit is in line with CBs referring to their choice of stress

scenarios as judgements23 indicating discretion, with frequent debates on how meaningful a test

is24, and with the extreme experience of the 2011 European stress test.25 Our assumption that

the CB knows bank health when deciding on the message is motivated by CB’s access to private

information in their role as bank supervisor.26

4 Reassurance

We show that delegating stress tests to a softer sender can be socially beneficial as this increases

reassurance. This benefit of delegation arises because the sender’s mandate affects how financial

markets interpret a given message. As a softer sender chooses a low stress severity in many cases

while tougher senders opt for it only if all banks are very unhealthy, a stress test with a low

severity is interpreted less sceptically when it comes from a softer sender. Hence, softer senders

achieve more reassurance.

To derive this, we formally define reassurance and use the definition to compare reassurance in

ZDF and FDF. Then, we turn to HRF where we first characterise the equilibrium - a contribution

to the literature on strategic communication - and use it to characterise reassurance in a HRF,

comparing it to ZDF or FDF and relative to HRF with alternative mandates.

This section studies the reassurance role of stress tests in isolation. This means that we

remove the incentive role of stress tests by assuming that bank effort is exogenous and common

21An example is G(H) = H, F (H) = Ha where a ≥ 1 ensures an MLRP ordering.
22The fact that the interpretation of messages is based on conjectured effort and not actual effort is important

when considering the incentive effect of stress tests disclosure (section 5).
23“The FPC and PRC judge the stress scenario to be appropriate [...].” Bank of England, Key elements of the

2019 stress test, 5 March 2019.
24“Bank stress tests fail to tackle deflation spectre.” Financial Times, 27 October 2014.
25“The tests were long ago branded as flawed, so the results [most banks passed] were never going to serve their

market-soothing purpose. The exams refused to countenance a sovereign default, even as such an event appears
imminent. Investors understood that the tests had been overtaken by events, and that a ‘pass’ or ‘fail’ was largely
meaningless. Instead, they dumped bank shares [. . . ]” Financial Times, EU bank stress tests, 18 July 2011.

26Moreover, stress tests as a diagnostic tool for regulators to learn about bank health existed already prior
to the financial crisis. The novelty of the post-crisis regime is that results are published in a specific frequency
unaffected by economic events.
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knowledge.

Definition 3 Institution Design D is said to provide more reassurance than D′ if and only if

E[min(µ1, µ2)] is higher in D than in D′.

This definition adopts the designer’s view of reassurance. Previously, we introduced the

reassurance motive as a desire to increase the beliefs financial markets hold about bank health,

potentially with added concern for the weaker bank. This corresponds to the CB’s view. When

the CB chooses a message, its choice affects average beliefs (µ1+µ2
2 ) and beliefs about the

weak bank (min(µ1, µ2)). However, when the designer chooses an institutional design, this

choice affects dispersion of beliefs (E[min(µ1, µ2)]) but does not affect expected average beliefs

since by Bayes plausibility E[µ1+µ2
2 ] = E[H1]+E[H2]

2 ∀ D.27 Thus, for the designer, maximising

reassurance corresponds to minimising dispersion of beliefs. Intuitively, any message which leads

to µi > E[Hi] must mean that another message leads to µi < E[Hi]. While different dispersion

measures exist, E[min(µ1, µ2)] is convenient since our example welfare function in expectation is

E[W (µ1, µ2)] = λ E[min(µ1, µ2)] + (1− λ) E[H1]+E[H2]
2 .

Proposition 1 Institutional Designs D can be ranked by how much reassurance they provide:

(i) ZDF provides more reassurance than HRF which provides more than FDF.

(ii) Within HRF, reassurance is weakly increasing in the weight the mandate puts on the weak

bank.

Proof: See Appendix C.1.

ZDF provides more reassurance than FDF. In ZDF, the CB releases no information and thus

creates no dispersion of beliefs (µi = E[Hi]).
28 This corresponds to high reassurance. In FDF,

the CB fully reveals bank health (µi = Hi) which is a deterioration in beliefs if Hi < E[Hi].
29

This corresponds to low reassurance.

The characterization of reassurance in a HRF builds on the equilibrium of the hurdle rate

communication game, which is played if the designer chooses a HRF. The next subsection

characterises this equilibrium.

4.1 Hurdle Rate: Equilibrium Communication

We show that an equilibrium exists in the hurdle rate communication game and prove that it

is unique when we restrict our attention to equilibria that satisfy a notion of monotonicity. In

this equilibrium, the CB chooses a level of stress such that both banks pass if their health is

similar and choose a level such that one bank passes and one fails if their health differs strongly.

Thus, financial markets interpret stress tests where both banks pass as meaning that both banks’

27Bayes plausibility refers to the equilibrium property of Bayesian beliefs that E[µi] = E[Hi].
28Formally, since in ZDF µi = E[Hi], reassurance is E[min(µ1, µ2)] = E[min(E[Hi],E[Hi])] = E[Hi].
29Formally, since in FDF µi = Hi, reassurance is E[min(µ1, µ2)] = E[min(Hi, Hi)] < E[Hi].
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health is at the level of stress or slightly above, but that no bank’s health is far above as then

the CB would have wanted to choose a higher level of stress and let the weaker bank fail the

stress tests. Stress tests where only one bank passes and one fails are interpreted as meaning

that the passing bank’s health is exactly at the level of stress and the failing bank’s health is

substantially lower.

In a hurdle rate communication game, the CB faces a trade-off as it judges multiple banks

against the same stress scenario. Formally, the CB chooses one strategic variable (s) and

truthfully communicates whether a bank’s health exceeds s (pass) or not (fail). Thus, higher

levels of stress have the benefit of increasing beliefs about those banks which continue to pass

but have the cost of resulting in low beliefs about those banks who fail the stress test.

Characterising the equilibrium is challenging because financial markets know that messages

are not just true, but also chosen strategically. Thus, the interpretation of a message takes

into account that the CB preferred this message to all other feasible messages. Therefore, the

interpretation depends on the CB’s mandate. The interpretation in turn affects the CB’s trade-off.

Theorem 1 characterises the equilibrium mathematically and Figure 2 depicts it graphically.

Denoting the CDF of H1 as F and of H2 as G.

Theorem 1 In the Hurdle Rate Framework communication game there exists a Perfect Bayesian

Equilibrium (PBE). This equilibrium is characterised by two indifference frontiers x(H2) and

y(H2), visualised in Figure 2a, such that the sender plays:

s = H1 iff H1 > x(H2) → {H1, p, f}
s = min(H1, H2) iff x(H2) ≥ H1 ≥ y(H2) → {min(H1, H2), p, p}
s = H2 iff y(H2) > H1 → {H2, f, p}

where x(0) = y(0) = 0; x(H2) ≥ y(H2) ∀ H2, x(H2) ≤ 1 ∀ H2; and x(H2) and y(H2) are both

continuous and monotonically increasing (dx(H2)
dH2

> 0, dy(H2)
dH2

> 0).

Recipients form beliefs accordingly, visualised in Figure 2b.

{s, p, f} is interpreted as µ1 = s; µ2 = EG[H | H < x−1(s)]

{s, f, p} is interpreted as µ2 = s; µ1 = EF [H | H < y(s)]

{s, p, p} is interpreted as µ1 = α s+ (1− α) EF [H | s ≤ H ≤ x(s)]

µ2 = (1− α) s+ α EG[H | s ≤ H ≤ y−1(s)]

{s, f, f} is interpreted as µ1 = µ2 = 0 ∀ s > 0

where

α =
f(s) [G(y−1(s))−G(s)]

f(s) [G(y−1(s))−G(s)] + g(s) [F (x(s))− F (s)]
(2)

Proof: See Appendix B.1.
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Figure 2: Equilibrium in a Hurdle Rate Framework

(a) Sender’s Communication Strategy

H1

H2

x(H2)

y(H2)

{H1, p, f} {H2, p, p}

{H1, p, p}

{H2, f, p}

µ2

(b) Receivers’ Beliefs

H1

H2

µ1

Hi

Hi

µ2

x(H2)

y(H2)

{s, p, f} {s, p, p}

{s, p, p}

{s, f, p}

µi

Note: Figure 2 depicts an example: Hi ∼ U [0, 1] ∀ i = 1, 2; V (µ1, µ2) = µ1+µ2
2

. Then x(H2) = 2H2; y(H2) = 1
2
H2.

The two indifference frontiers x(H2) and y(H2) are defined by the following set of

indifference equations where µi | {s, o1, o2} denotes the posterior formed upon receiving {s, o1, o2}.
On x(H2):

V
(
µ1 | {H1, p, f}, µ2 | {H1, p, f}

)
= V

(
µ1 | {H2, p, p}, µ2 | {H2, p, p}

)
(3)

On y(H2):

V
(
µ1 | {H1, p, p}, µ2 | {H1, p, p}

)
= V

(
µ1 | {H2, f, p}, µ2 | {H2, f, p}

)
(4)

When bank health is identically distributed, the indifference frontiers are symmetric, i.e.

y(H2) = x−1(H2) and α = 0.5.

Example: Let Hi ∼ U [0, 1] ∀ i = 1, 2 and let V (µ1, µ2) = ω min(µ1, µ2) + (1− ω) µ1+µ2
2 . Then

the equilibrium is characterised by:

x(H2) =
2− ω
1− 2ω

H2 ; y(H2) = x−1(H2) (5)

This holds for ω < 0.5. For ω ≥ 0.5 the regulator sends {min(H1, H2), p, p} in almost all

cases. The only exception arises when min(H1, H2) = 0 as then the sender sets s = max(H1, H2)

which results in one bank passing and one bank failing the stress test.

To discuss uniqueness of this equilibrium, consider the following notion of monotonicity:

Definition 4 An equilibrium is said to satisfy monotonicity if and only if beliefs satisfy the
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following condition:

µi | {s, o1, o2} > µi | {s′, o1, o2} ∀ s > s′, ∀i = 1, 2, ∀o1, ∀o2 (6)

This means that beliefs are increasing in the level of stress for every given stress test outcome,

i.e. for passing and for failing the test. This seems close to commentary of stress tests where

passing weak tests is seen as a relatively weak signal while passing tough tests is viewed as a

strong signal. While this condition imposes a theoretical restriction, it seems plausible in the

context of real world bank stress tests.

Theorem 2 The equilibrium described in Theorem 1 is not a unique weak PBE, but it is the

only weak PBE which satisfies monotonicity.

The proof and a discussion of alternative equilibria which violate monotonicity is provided

in Appendix B.2. For the remainder of the paper, we focus on the equilibrium as described in

Theorem 1 when referring to a HRF.

To build an understanding of how delegation affects the equilibrium, the following proposition

studies a comparative static in the sender’s mandate.

Proposition 2 The more weight the mandate places on the weak bank, the larger the set of

states where {min(H1, H2), p, p} is sent and the smaller the set of states where s = max(H1, H2)

is set.

Proof: See Appendix C.2.

The intuition behind proposition 2 builds on the differences in dispersion of beliefs created by

setting s = min(H1, H2) or s = max(H1, H2). Recall from Theorem 1 that for any (H1, H2) on

the x(H2)-indifference frontier, {H2, p, p} results in µ1 = µ2 while {H1, p, f} results in dispersed

posteriors µ′1 6= µ′2. Moreover, µ′2 < µ1 = µ2 < µ′1. Thus, while the CB with mandate M is

indifferent between {H2, p, p} and {H1, p, f} on its indifference frontier, a CB with mandate M′

that places more weight on reassurance than M strictly prefers {H2, p, p} as this achieves a

higher min(µ1, µ2) than {H1, p, f}.

Messages where all banks pass occur in equilibrium even if the mandate places no extra

weight on the weak bank.30 This arises because messages with high levels of stress which both

banks pass are only feasible if both H1 and H2 are high. Thus, any possible interpretation must

result in high µ1+µ2
2 (e.g. {0.9, p, p}). However, messages with a high level of stress which only

one bank passes are feasible also when one bank is extremely weak. E.g. {0.95, p, f} is feasible

both at (H1 = 0.95, H2 = 0) and at (H1 = 0.95, H2 = 0.9). Thus, in equilibrium {0.95, p, f}
cannot be a strong message about H2 and hence at (H1 = 0.95, H2 = 0.9) it is optimal to send

{0.9, p, p}.
30This can be seen in the example used to construct Figure 2 where a sender who places no extra weight on the

weak bank sends {min(H1, H2), p, p} at every second (H1, H2).
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Moreover, low levels of stress which all banks pass and which result in financial markets

understanding that all banks are weak can arise in equilibrium even if the mandate places no

extra weight on the weak bank. We return to this observation in section 8 where we argue that

the European stress test of 2011 (most banks passed, financial markets continued to believe that

bank health was low) is no evidence of regulatory incompetence or softness, but rather that such

an event arises when the stress tester has committed to using a HRF and learns that banks are

weak.

Messages where one bank fails occur in equilibrium only if the mandate places no weight, or

at most a small weight, on the weak bank. Mandates with medium and large weights result in

an equilibrium where the CB almost always sends {min(H1, H2), p, p} and sets s = max(H1, H2)

iff min(H1, H2) = 0. For example, when Hi ∼ U [0, 1] ∀ i = 1, 2 and V (µ1, µ2) = ω min(µ1, µ2) +

(1− ω) µ1+µ2
2 , the CB almost always sends {min(H1, H2), p, p} for all ω ≥ 0.5.

The comparative statics show that additional concern for the weak bank is not necessary for

the equilibrium to take the form depicted in Figure 2 and that large degrees of concern for the

weak bank are not necessary to result in an equilibrium where banks fail the stress test only if

they are extremely weak.

4.2 Hurdle Rate: Reassurance

This subsection shows that delegating stress tests to a softer sender can be socially beneficial as

this increases reassurance. To establish this, we characterise reassurance provided in a HRF and

show that reassurance is higher for softer mandates. We also show that reassurance in a HRF

lies between that of ZDF and FDF.

Characterisations of reassurance in a HRF face a mathematical difficulty stemming from the

numerous thresholds in the equilibrium of the communication game, and the conceptual difficulty

that changes in the mandate have competing, partially offsetting effects on reassurance. On

the one hand, a softer sender sends {min(H1, H2), p, p} more often which increases reassurance

since {min(H1, H2), p, p} creates less dispersion of beleifs than messages resulting from s =

max(H1, H2). On the other hand, the interpretation of messages differs across sender mandates.

While {min(H1, H2), p, p} messages are more reassuring when sent by a softer sender, {H1, p, f}
messages are less reassuring when sent by a softer sender.

Intuitively, a softer sender chooses {min(H1, H2), p, p} messages in many cases while tougher

senders opt for it only if both banks are very unhealthy. Thus, {min(H1, H2), p, p} is interpreted

more sceptically if it is sent from a tough sender. However, this also means that messages which

one bank fails, e.g. {H1, p, f}, result in higher beliefs about the weak bank if the sender is

tougher.

To overcome these challenges, note that mathematically reassurance in a HRF is:

E[min(µ1, µ2)] =

∫ 1

0

∫ 1

0
min(µ1, µ2) f(H1) dH1 g(H2) dH2 (7)
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As beliefs build on the CB’s strategy, which is characterised by thresholds, this becomes:

E[min(µ1, µ2)] =

∫ x−1(1)

0

[∫ y(H2)

0
E
[
H | H < y(H2)

]
f(H1) dH1

+

∫ H2

y(H2)

1

2
H1 +

1

2
E
[
H | H1 < H < x(H1)

]
f(H1) dH1

+

∫ x(H2)

H2

1

2
H2 +

1

2
E
[
H | H2 < H < x(H2)

]
f(H1) dH1

+

∫ 1

x(H2)
E
[
H | H < x−1(H1)

]
f(H1) dH1

]
g(H2) dH2

+

∫ 1

x−1(1)

[∫ y(H2)

0
E
[
H | H < y(H2)

]
f(H1) dH1

+

∫ H2

y(H2)

1

2
H1 +

1

2
E
[
H | H1 < H < 1

]
f(H1) dH1

+

∫ 1

H2

1

2
H2 +

1

2
E
[
H | H2 < H < 1

]
f(H1) dH1

]
g(H2) dH2

(8)

We find that reassurance is weakly increasing in the weight the mandate puts on the weak

bank (Proposition 1). This means that when stress tests are conducted by a softer sender, the

increase in reassurance stemming from {min(H1, H2), p, p} messages becoming more likely and

from these messages being interpreted more favourably outweighs the decrease in reassurance

stemming from {H1, p, f} being interpreted more sceptically. We also find that reassurance in a

HRF lies between ZDF and FDF for all possible mandates.

Delegating stress tests to a CB with a mandate that is softer than welfare maximisation

increases reassurance and can thus be socially beneficial. To see the benefit of delegation

formally, recall that effort is taken as exogenous. Then, for any designer who places some strictly

positive extra weight on the weak bank, welfare maximisation becomes reassurance maximisation.

Supposing that ZDF is not available, the designer’s optimal choice therefore is to choose a

mandate which is so soft that the CB implements the softest possible communication rule, i.e.

almost always sends {min(H1, H2), p, p}.31

The benefit of delegation arises because the CB’s mandate affects how financial markets

interpret messages. For the designer, choosing a soft mandate is effectively a commitment to

sending {min(H1, H2), p, p} messages often and setting s = max(H1, H2) only in the rare case

when one bank is extremely weak. This results in the interpretation of {min(H1, H2), p, p}
messages being less sceptical and thus increases reassurance.32 The alternative - setting the

31This is not necessarily the same as delegating to the softest possible sender. As argued in the context of
proposition 2, there exists a range of mandates which result in almost always sending {min(H1, H2), p, p}. In
our example, ω ∈ [0.5, 1]. The designer is indifferent between these mandates as they imply the same level of
reassurance.

32A designer can achieve even more reassurance by choosing ZDF. The result here, which compares different
mandates in a HRF, is important when there is a reason to disclsoe some information. In our full model, this
reason is the need to create incentives. More generally, CBs may view some degree of communication as necessary
for public accountability reasons.

15



CB’s mandate to equal welfare maximisation and announcing that {min(H1, H2), p, p} will be

sent often - would not affect the interpretation of messages as financial markets realise that it is

optimal for the CB to deviate from the stated communication rule.

While this section showed that delegation to a softer sender can be beneficial as it increases

reassurance, the next section shows that delegation to a tougher sender can be beneficial as it

increases incentives.

5 Incentives

We show that delegating stress tests to a tougher sender can be socially beneficial as this increases

incentives. This benefit of delegation arises because the sender’s mandate affects what messages

banks expect the sender to send. As banks know that a tougher sender lets banks fail the stress

test at more health states, delegating to a tougher sender makes the threat of revealing bank

weakness credible at more health states. The credible threat incentivises banks to take prudent

actions, which improve bank health. We show that the increase in incentives caused by delegation

can result in a shift from an equilibrium with low prudent actions to an equilibrium with high

prudent actions.

To derive this, we formally define incentives and show that FDF implies stronger incentives

than ZDF. Then, we characterise incentives in a HRF and show that they are higher for tougher

mandates and lie between those of ZDF and FDF. Drawing on these results, we characterise

equilibria in the game with endogenous bank effort and show that, when incentives are stronger,

high effort occurs in equilibrium for a larger set of parameters.

An institution design is said to generate incentives if expected beliefs E[µi] depend on a

bank’s effort ei. While higher effort improves E[Hi] by assumption, it depends on the design

whether the improvement in E[Hi] translates into an improvement in E[µi]. To formalise this,

let low effort lead to Hi following CDF G, high effort to CDF F , and denote the conjectures

financial markets have on bank effort as vectors l = (l1, l2) and correspondingly h = (h1, h2).

Definition 5 Institution Design D generates effort incentives if and only if:

E
[
µ1(l) | h1, l2

]
− E

[
µ1(l) | l1, l2

]
> 0 (9)

where by Bayes plausibility of beliefs E
[
µ1(l) | l1, l2

]
= E[H1 | l1] = EG[H].

Intuitively, incentives capture a bank’s expected benefit from choosing high effort. Recall that

banks weigh up the cost of effort C(h)− C(l) against the benefit of higher expected beliefs. We

define incentives as the change in expected beliefs when a bank deviates from an equilibrium.33

That means we hold the rival bank’s effort and financial market’s conjectured efforts fixed.

33Definition 5 considers deviations from a low effort equilibrium. An analogous definition in terms of deviations
from a high effort equilibrium is EF [H]−E[µ(h) | l1, h2] > 0. The ordering of communication frameworks in terms
of incentives is identical in both cases.
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For example, in FDF markets always learn bank health perfectly (µi = Hi). Thus, high effort

results in E
[
µ1(l) | h1, l2

]
= EF [H]. Hence, FDF generates strong incentives EF [H]− EG[H]. In

contrast, in ZDF markets never learn bank health. Thus, µi = E[Hi] where the expectation is

calculated based on financial market’s conjectured effort. Hence, high effort results in E
[
µ1(l) |

h1, l2
]

= EG[H] and therefore ZDF generates zero incentives.34

It is important to distinguish between the roles of effort and conjectured effort. While effort

determines the distribution from which bank health is drawn and thus the likelihood of the CB

sending a given message, conjectured effort determines the distribution from which financial

markets think that bank health is drawn and thus based on which they interpret a given message.

While in equilibrium effort and conjectured effort coincide, the calculation of incentives builds on

a deviation from equilibrium where effort and conjectured effort differ. Since the responsiveness of

expected beliefs to effort depends on the institution design, we now rank designs by the strength

of incentives they generate.

5.1 Comparing Designs in Terms of Incentives

This subsection shows that delegating stress tests to a tougher sender can be socially beneficial as

this increases incentives. To establish this, we characterize incentives for all institutional designs

and show that incentives in a HRF are higher for tougher mandates and lie between those of

ZDF and FDF.

Proposition 3 Institutional designs D can be ranked by the strength of incentives generated:

(i) FDF provides more incentives than HRF which provides more than ZDF.

(ii) Within HRF, the strength of incentives is weakly decreasing in the weight the mandate

places on the weak bank.

Proof: See Appendix C.3.

Calculating incentives in a HRF is complicated because banks choose effort but take conjec-

tured effort as given.35 While in some cases the constant conjectured effort makes expected beliefs

more responsive to effort than expected fundamentals, the reverse is true in other cases. For exam-

ple, when effort leads to an improvement in H1 from H1 < y(H2) to H ′1 where H1 < H ′1 < y(H2),

then beliefs are unaffected since the CB sends {H2, f, p} in both cases. On the other hand, if

H1 < y(H2) < H ′1, then beliefs increase more strongly than H1 as the CB switches from sending

{H2, f, p} to {H ′1, p, p}.36 To calculate incentives, we need to find the expected effect across all

possible states.

34Since E
[
µ1(l) | h1, l2

]
describes a deviation from equilibrium, Bayes plausibility, which is an equilibrium

property, need not hold.
35Incentives in ZDF and FDF are more straightforward to calculate and were thus used to explain Definition 5.
36As a third case, beliefs can change in line with fundamentals. When effort leads to an improvement from

H1 > x(H2) to H ′1 > H1 > x(H2), the CB changes from sending {H1, p, f} to {H ′1, p, f}.
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To overcome this challenge, note that mathematically incentives in a HRF are:

E
[
µ1(l) | h1, l2

]
=

∫ x−1(1)

0

[∫ y(H2)

0
EG
[
H | H < y(H2)

]
f(H1)dH1

+

∫ H2

y(H2)

1

2
H1 +

1

2
EG
[
H | H1 < H < x(H1)

]
f(H1)dH1

+

∫ x(H2)

H2

1

2
H2 +

1

2
EG
[
H | H2 < H < x(H2)

]
f(H1)dH1

+

∫ 1

x(H2)
H1f(H1)dH1

]
g(H2)dH2

+

∫ 1

x−1(1)

[∫ y(H2)

0
EG
[
H | H < y(H2)

]
f(H1)dH1

+

∫ H2

y(H2)

1

2
H1 +

1

2
EG
[
H | H1 < H < 1

]
f(H1)dH1

+

∫ 1

H2

1

2
H2 +

1

2
EG
[
H | H2 < H < 1

]
f(H1)dH1

]
g(H2)dH2

(10)

We find that incentives in a HRF are weakly decreasing in the weight the mandate places on

the weak bank and lie between the incentives provided by FDF and ZDF. Moreover, in a HRF

even the softest possible sender creates strictly stronger incentives than ZDF. This holds because

in a HRF the level of stress provides some information on bank weakness for any mandate.37

Additionally, in a HRF even a sender who is concerned only with average bank health creates

strictly weaker incentives than FDF.

Delegating stress tests to a tougher sender can be socially beneficial as this increases incentives.

The increase in incentives arises because delegation affects what messages banks expect to be

sent. For the designer, delegating to a tougher sender is thus a form of committing to reveal

bank weakness at more health states. As banks know that delegating has made the threat of

revealing weakness credible, they are incentivised to choose high effort. While this section defined

incentives in terms of a deviation from equilibrium, the next section solves for the equilibrium.

5.2 Incentives and Equilibrium Bank Effort

This subsection shows that a communication framework which generates strong incentives results

in banks taking high prudent actions in equilibrium. Thus, the increase in incentives caused by

delegating to a tougher sender can cause a shift from an equilibrium with low prudent actions to

an equilibrium with high prudent actions. This can increase welfare.

Proposition 4

(i) In ZDF, there always exists a unique pure strategy equilibrium. In this equilibrium both

banks choose low effort.

37Example: For any mandate, it is optimal to send {0.1, p, p} only if at least one bank has health exactly at 0.1.
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(ii) In FDF, there always exists a unique pure strategy equilibrium. In this equilibrium both

banks choose high effort.

(iii) In HRF, there exist two thresholds t(M) and t̄(M) with t(M) < t̄(M) such that:

(a) For all C(h)− C(l) ≤ t(M), there exists a unique pure strategy equilibrium. In this

equilibrium, both banks choose high effort.

(b) For all C(h)− C(l) ≥ t̄(M), there exists a unique pure strategy equilibrium. In this

equilibrium, both banks choose low effort.

(c) For all t(M) < C(h)− C(l) < t̄(M), there does not exist a pure strategy equilibrium.

where t̄(M) = E[µ1(l) | h1, l2]− EG[H] and t(M) = EF [H]− E[µ1(h) | l1, h2].

Proof: See Appendix C.4.

Proposition 4 means that stronger incentives ensure that high effort occurs in equilibrium

also when effort is more costly. To see how incentives determine equilibrium effort, consider

ZDF and FDF. ZDF provides no incentives. This means that expected beliefs are unaffected

by effort. Therefore, banks have no benefit of exerting effort. As this reasoning is independent

of conjectured effort or the rival bank’s effort, the unique equilibrium exhibits low effort. FDF

provides strong incentives (µi = Hi). Thus, effort has the same effect on expected beliefs and

expected health, independent of conjectured effort or the rival’s effort. This means that a bank’s

benefit of effort equals the social benefit and thus ensures that the equilibrium exhibits high

effort.

The role of incentives in shaping equilibrium effort applies also in a HRF, though the formal

treatment is complicated by the distinction between effort and conjectured effort. Fig 3 illustrates

the result of Proposition 4 (iii). The thresholds t(M) and t̄(M) capture the strength of incentives

and are higher if the mandate is tougher. Thus, a tougher mandate ensures that the high effort

equilibrium occurs even at larger C(h)− C(l). The thresholds diverge (t(M) 6= t̄(M)). While

t(M) and t̄(M) both capture incentives, the calculation of incentives is based on a different

equilibrium and thus on different conjectured effort and rival bank’s effort. Whereas t̄(M)

captures incentives from a low effort equilibrium, t(M) refers to the high effort equilibrium.

Figure 3: Equilibrium Effort in a Hurdle Rate Framework

C(h)− C(l)|
0

|
EF [H]− EG[H]

|
t(M)

(h, h)

|
t̄(M)

(l, l)

Note: Thresholds depicted for the case where G(H) = H,F (H) = H2, V (µi, µ2) = µ1+µ2
2

.

There exist costs of effort where no {HRF,M} can generate incentives which are sufficiently

strong to induce high effort, and effort is socially beneficial. This arises because even the toughest
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possible mandate in a HRF provides weaker incentives than FDF. Henceforth, we refer to “high

costs of effort” if no {HRF,M} can induce high effort and otherwise refer to “low costs of effort”.

Delegating stress tests to a CB with a mandate that is tougher than welfare maximisation

can be socially beneficial as this increases incentives. Increased incentives, in turn, can increase

equilibrium effort. Since EF [H]− EG[H] > C(h)−C(l), the switch from low to high equilibrium

effort is socially beneficial, ceteris paribus. However, this switch is achieved by delegating to a

tougher sender. This decreases reassurance. Thus, the incentive and the reassurance motive of

stress tests are conflicting. While, so far, we studied reassurance and incentives separately, the

next section studies the designer’s problem when he trades off incentives and reassurance.

6 Central Bank Design

We show that, for a large set of parameters, the optimal design is a hurdle rate framework with

the softest possible mandate that induces high effort. This means that the optimal mandate can

differ in either direction from welfare maximisation. The advantage of a HRF is that it provides

an intermediate combination of incentives and reassurance. FDF generates strong incentives but

no reassurance and is therefore only optimal if no HRF can induce high effort, effort has a large

effect on bank health, and society places only a small weight on reassurance. ZDF generates

strong reassurance but no incentives and is therefore only optimal if effort has small effects on

bank health and society places a large weight on reassurance.

To derive this, we first show that the designer’s problem reduces to a choice among three

alternatives: ZDF, FDF, or HRF with the softest possible mandate that induces high effort.38

Then, we solve for the optimal design. We interpret these results in terms of strategic delegation.

6.1 The Optimal Mandate

As a first step in solving for the optimal design, this subsection shows that the design choice

problem reduces to a choice among three alternatives: ZDF, FDF, or HRF with the softest

possible mandate that induces high effort. All HRF with mandates which do not induce high

effort are dominated by ZDF since ZDF provides more reassurance and neither design induces

high effort. Similarly, all HRF with mandates that induce high effort are dominated by the

softest possible mandate which induces high effort as the extra incentives generate no benefit in

terms of effort while they have the cost of reducing reassurance.

Proposition 5 The design choice problem reduces to a choice among three alternatives: FDF,

ZDF, {HRF,M̃} where M̃ is the softest possible mandate which incentivises high effort. This

means M̃ is defined by t(M̃) = C(h)− C(l) and thus is tougher for larger C(h)− C(l).

Proof: See Appendix C.5.

38Since in ZDF all mandates result in the same equilibrium, we economize on notation and refer to {ZDF,M}
as ZDF. Similarly, {FDF,M} becomes FDF. In HRF, M affects the equilibrium. Thus, we maintain {HRF,M}.
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This result arises because reassurance is socially beneficial per se but incentives are beneficial

only if they cause an increase in effort. Thus, all {HRF,M} which do not induce high effort result

in lower welfare than ZDF as neither achieves high effort while ZDF provides more reassurance.

Similarly, all {HRF,M} which induce high effort result in lower welfare than {HRF,M̃} as all

these designs achieve high effort while {HRF,M̃} provides more reassurance.

When the cost of effort is low, the optimal design is either ZDF or {HRF,M̃}. Recall that

we defined low costs to ensure that {HRF,M̃} exists. Thus, {HRF,M̃} achieves higher welfare

than FDF as both incentivise high effort while {HRF,M̃} achieves more reassurance.

When the cost of effort is high, the optimal design is either ZDF or FDF. High costs of effort

mean that all {HRF,M} result in low effort. Thus, all {HRF,M} result in lower welfare than

ZDF. However, FDF induces high effort and can, depending on parameters, result in higher

welfare than ZDF. We now characterize the optimal design for every parameter combination.

6.2 Optimal Central Bank Design

We show that, for a large set of parameters, the optimal design is a hurdle rate framework with

the softest possible mandate that induces high effort ({HRF,M̃}). A HRF is optimal because

it provides an intermediate combination of incentives and reassurance whereas FDF generates

strong incentives but no reassurance. The reverse is true for ZDF.

Design {HRF,M̃} is the optimal design if cost of effort are low and simultaneously the effect

of effort on bank health is large relative to the designer’s concern for the weak bank. When costs

of effort are so high that no HRF induces high effort, but high effort has a strong effect on bank

health relative to the designer’s concern for the weak bank, FDF is the optimal design. ZDF

is only optimal when effort has a small effect on bank health and simultaneously the designer

places a large weight on the weak bank.

To formalise these optimal central bank design results, we draw on the familiar functional

forms W (µ1, µ2) = λ min(µ1, µ2) + (1−λ) µ1+µ2
2 and V (µ1, µ2) = ω min(µ1, µ2) + (1−ω) µ1+µ2

2 .

Additionally, let a capture the strength with which effort improves the bank health distribution.

Formally, let low effort lead to G(H) = H and high effort to F (H) = Ha where a > 1 ensures an

MLRP ordering.

Proposition 6 Optimal Central Bank Design

(i) When costs of effort are low, i.e. C(h)− C(l) ≤ t(M(0)), the optimal institutional design

is:

(a) {HRF,M̃} iff a > λ′(a,C)

(b) ZDF otherwise

where λ′(a,C) = EF [H]−EG[H]
EF [H]−EHRF,ω̃ [min(µ1,µ2)] and thus λ′(a,C) is increasing in the cost of effort

because ω̃ is decreasing in the cost of effort.
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(ii) When costs of effort are high, i.e. C(h)− C(l) > t(M(0)), the optimal institutional design

is:

(a) FDF iff a > λ?(a)

(b) ZDF otherwise

where λ?(a) = EF [H]−EG[H]
EF [H]−EF [min(H1,H2)] and thus λ?(a) > λ′(a,C) always holds.

Proof: See Appendix C.6.

Figure 4: Optimal Central Bank Design
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−ã

(b) Low cost of effort

a

λ

λ?(a)

|
1

HRF

HRF

HRF

−ã
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Note: G(H) = H, F (H) = Ha with a > 1; HRF refers to {HRF,M̃}; ã = EF [min(H1, H2)]− EG[H].

For high costs of effort, the optimal design is FDF if and only if the improvement in bank

health outweighs the reduction in reassurance. Otherwise ZDF is optimal. For a given weight

on reassurance (λ), there exists a threshold benefit of bank effort (a) at which the designer is

indifferent between ZDF and FDF. For all larger a, it is optimal to choose FDF. The more weight

the designer places on reassurance, the larger the threshold benefit of effort becomes. This is

depicted in Figure 4a where the partitioning frontier λ∗(a) is increasing.

For low costs of effort, the optimal design is {HRF,M̃} if and only if the improvement in

bank health outweighs the reduction in reassurance. Otherwise ZDF is optimal. Analogous to

the case with high costs of effort, this gives rise to a threshold benefit of effort at which the

designer is indifferent between {HRF,M̃} and ZDF. When the reassurance motive is larger,

the designer requires a stronger effect of effort to choose {HRF,M̃} over ZDF. The resulting

partitioning frontier λ′(a,C), which is increasing, is depicted in Figure 4b. Since the reduction

in reassurance is lower for {HRF,M̃} than for FDF, λ′(a,C) lies strictly below λ∗(a).

A hurdle rate framework is the optimal design for a large set of parameters because it provides

an intermediate combination of incentives and reassurance. Specifically, when the cost of effort

is low and the benefit high, {HRF,M̃} improves on FDF, which would otherwise have been

chosen, because {HRF,M̃} provides more reassurance while both achieve high effort. Moreover,

{HRF,M̃} improves on ZDF for parameters in the area between λ∗(a) and λ′(a,C). While
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for these parameters ZDF is preferred to FDF, which induces effort at a high cost in terms of

foregone reassurance, {HRF,M̃} induces effort at a lower cost and achieves even higher welfare

than ZDF.

6.3 Optimal Strategic Delegation

We show that the optimal mandate can differ in either direction from welfare maximisation. This

means that in some cases it is optimal for the designer to delegate stress tests to a tougher sender

while in others, perhaps surprisingly, it is optimal to delegate to a softer sender. This arises

because the increase in reassurance caused by delegating to a softer sender is socially valuable

per se while the corresponding reduction in incentives constitutes a social cost only if it results

in lower effort. Moreover, even when the change in incentives shifts effort, but this shift only

has a small effect on bank health, it is possible that the increase in reassurance outweighs the

reduced incentives. Formally, the strategic delegation result is a Corollary of Proposition 6.

Corollary 1

(i) The optimal central bank mandate generically differs from welfare maximisation.

(ii) There exist cases where the optimal mandate is tougher than welfare while in other cases it

is softer.

Formally, for any strength of society’s reassurance motive (λ), there exist combinations of a

and C(h)−C(l) such that {HRF,M̃} is the optimal design. Recall that M̃ is independent of λ.

For high λ, M̃ is a tougher mandate, while for low λ, M̃ is a softer mandate.

Delegating to a tougher sender can be optimal when a mandate to maximise welfare generates

incentives which are not strong enough to induce high effort. Provided costs of effort are low,

there exist tougher mandates that induce high effort. When effort has large effects on bank

health, the optimal design is {HRF,M̃} where M̃ is tougher than welfare. In this case, the

benefit of delegating to a tougher sender (increased incentives due to banks anticipating that

their weakness will be revealed) outweighs the cost (reduced reassurance due to financial markets

interpreting messages more sceptically when stress is low and all banks pass).

More surprisingly, it is possible that delegating to a softer sender is optimal. This is the case

when a mandate to maximise welfare generates stronger incentives than needed to induce high

effort. Then, there exist mandates which are softer than welfare maximisation and also achieve

high effort, but provide more reassurance. Such softer mandates increase welfare provided welfare

puts some, potentially small, weight on reassurance.

The result that a HRF can be the optimal design leads to the delegation interpretation

discussed above and also implies that stress tests become an informational contagion channel.

We discuss this in the next section.
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7 Informational Contagion

We show that stress tests become an informational contagion channel when a HRF is used. This

means that changes in the health of one bank affect beliefs about the health of other banks. This

arises because the CB optimally responds to a change in one bank’s health by adjusting the

severity of stress. As all banks are judged against the same severity, the messages, and thus the

beliefs, about all banks are affected.

Informational contagion can take different forms. There are cases where a deterioration in the

health of one bank results in lower beliefs about the other bank. More surprisingly, there are also

cases where a deterioration in the health of one bank increases the belief about the other bank.

As HRF can be the optimal design, these results show that informational contagion can

be a feature of an optimal design when a time inconsistency problem exists. Contagion need

not reduce welfare. We first outline the different forms of contagion. Then, we show that the

mechanism that turns stress tests into an informational contagion channel - judging all banks

against the same severity of stress - is the same mechanism that makes HRF optimal for many

parameters.

7.1 Contagion Patterns

A deterioration in the health of one bank can decrease the belief about the health of the other

bank. This arises when the CB responds to the deterioration by lowering the severity of stress.

Compare (H1, H2) where x(H2) > H1 > H2 and thus {H2, p, p} is sent, to (H1, H
′
2) where

H ′2 < H2 and x(H ′2) > H1. At (H1, H
′
2), the CB sends {H ′2, p, p}. Thus, the CB has lowered the

severity of stress. While both banks continue to pass, they pass a weaker test, which is a less

favourable message. As a result, beliefs about both banks are lower.

A deterioration in the health of one bank can increase the belief about the health of the other

bank. This arises when the CB responds to the deterioration by increasing the severity of stress.

Consider (H1, H2) where x(H2) > H1 > H2 and a deterioration to (H1, H
′
2) where H ′2 < H2 and

H1 > x(H ′2). In response to this deterioration, the CB changes its message from {H2, p, p} to

{H1, p, f}. Thus, the CB has increased the severity of stress. While this amplifies the effect on

the weak bank - µ2 falls more strongly than H2 - it increases beliefs about the strong bank as it

passes a tougher test which is a more favourable message.

Neither pattern requires assumptions on the mandate. Instead, contagion arises in a HRF for

every mandate. Intuitively, the CB faces a choice between lowering the severity of stress, which

results in sending a slightly weaker message about both banks, and raising the severity of stress,

which results in one bank failing the test, a much weaker message, and in a slightly stronger

message about the bank that passes. The former can be preferred to the latter even when the

mandate places no additional weight on the weak bank.39

39Formally, contagion arises in any equilibrium in which {min(H1, H2), p, p} and {H1, p, f} messages are sent.
Theorem 1 shows that this is the case for all mandates.
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7.2 Contagion in the Optimal Design

While contagion has been found to be socially harmful (e.g. Allen et al. (2012)), our model

shows that contagion can be a feature of the socially optimal design. Formally, this holds because

contagion is a feature of any HRF and HRF is the optimal design for a large set of parameters.

Intuitively, the mechanism that turns stress tests into an informational contagion channel -

judging all banks against the same severity of stress - is the same mechanism that makes HRF

optimal for many parameters as it results in an intermediate combination of incentives and

reassurance. Without the constraint, i.e. in FDF or ZDF, there would be not contagion and

either incentives or reassurance, but not a combination of both.40

The result that contagion is a feature of the socially optimal design arises because of three

components of our model: stress tests are used to create incentives for banks, to reassure financial

markets, and commitment is not possible. Without the need for incentives, ZDF is optimal.

Without the need for reassurance, FDF is optimal. With the ability to commit, choosing e.g.

s = 0.5 for all health outcomes achieves an intermediate combination of incentives and reassurance.

None of these alternatives implies contagion. When incentives, reassurance, and no commitment

are present, the optimal design can imply contagion.

8 Conclusion

We showed that central banks face a time inconsistency problem when publishing bank stress

test results. Before a stress test, they want to appear tough as the threat of letting banks fail

the stress test incentivizes prudent behaviour. After the stress test, they want to act soft by

releasing only partial information in order to reassure financial markets about bank health.

We characterised an institutional design solution to this commitment problem: a social

planner specifies the central bank’s mandate and sets the framework within which the central

bank communicates. We find that a hurdle rate framework, where all banks are judged to pass or

fail relative to a common level of stress, is optimal in many settings as it generates intermediate

levels of both incentives and reassurance.

In a hurdle rate framework, strategic delegation provides additional benefits. This means the

planner maximises ex-ante welfare by setting the central bank’s mandate to differ from ex-post

welfare maximisation. The optimal mandate can differ in either direction. If taking prudent

actions has high costs, the planner optimally specifies the CB’s mandate to be “tougher” than

welfare maximisation, so that the CB is less concerned about supporting weak banks than society.

This makes it credible that the CB will reveal bank weakness by letting weak banks fail the stress

test and thus generates strong incentives. If the costs of prudent actions are low, the optimal

mandate is “softer” than welfare maximisation, so that the CB is very concerned about weak

banks. This achieves more reassurance while still generating sufficient incentives to induce the

40Recall that the case with as many stress scenarios as banks equals FDF in equilibrium. Thus, communicating
results as pass or fail relative to thresholds need not result in contagion. Contagion arises only when there are
fewer thresholds than banks.
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prudent action.

Informational contagion can be a feature of the socially optimal design when a time inconsis-

tency problem exists. Thus, contagion need not reduce welfare. Contagion arises in a hurdle rate

framework because the central bank optimally responds to a deterioration in one bank’s health

by adjusting the severity of stress. In some cases, it is optimal for the central bank to lower the

severity of stress. All banks pass, but as they pass a weaker test, beliefs about all banks are lower.

More surprisingly, there are also cases where a deterioration in one bank’s health leads to higher

beliefs about other banks. This is the case when the central bank increases the severity of stress.

These results lead to a reinterpretation of past stress tests. Stress tests by the EBA or its

predecessor (the CEBS) were repeatedly criticised for being too soft, because “many European

banks passed the annual exams in July yet still had their shares trashed by investors.”41 This

led to debates about the regulator’s competence. Our model shows that such an episode can

arise from optimal behaviour by the regulator. In our model, a regulator who faces unhealthy

banks and has committed to judging them against a common stress severity, optimally chooses a

low severity of stress, which all banks pass. Financial markets understand that the low stress

severity was not an accident but was chosen strategically because banks are weak. As a result,

financial markets believe that banks are weak. Our model shows that this occurs in equilibrium

for every mandate, i.e. even for “tough” mandates which place no additional weight on the weak

bank. Moreover, committing to use a hurdle rate framework can itself be an optimal choice as it

results in an intermediate combination of incentives and reassurance.

This paper adds a new dimension to the debate on stress test communication. We highlight

that welfare depends not just on the communication framework, but also on the central bank’s

mandate. Current central bank designs do not specify an objective which a central bank should

pursue in its communication. Absent an explicit mandate, central banks are likely to attempt to

maximise ex-post welfare. Thus, our paper suggests that unexploited welfare gains exist. Giving

central banks an explicit mandate which differs from ex-post welfare maximisation generates

gains from strategic delegation.

41“Which part of ‘stress test’ do the eurozone’s policy makers not understand? That so many European banks
passed the annual exams in July yet still had their shares trashed by investors says it all: the pass mark was too
low and the questions were too narrow.” Financial Times, Lex, European stress tests: a grim backdrop, 6 October
2011.
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A Full Revelation with Multiple Items

Proposition 7 When the sender (central bank) communicates about multiple items (banks)

simultaneously, sets at least as many hurdles as there are banks, and truthfully communicates pass

or fail for each bank relative to every hurdle, then every equilibrium is fully revealing, i.e. receivers

(financial markets) learn each bank’s health perfectly in every equilibrium of this communication

game.

This proposition serves two roles. It relates our results about communication on multiple

items to the single item setting with its seminal results of full revelation (Grossman and Hart,

1980; Grossman, 1981; Milgrom, 1981). It also justifies the name of Full Disclosure Framework

(FDF) that we give to a framework with at least as many hurdles as banks.

Proof: We focus on the case with two banks and two hurdles. Then, the sender’s messages

can be expressed as {sa, oa1, oa2; sb, ob1, o
b
2} where sj denotes a level of stress and oji ∈ {p, f} is the

outcome (pass or fail) for bank i relative to stress level j. We establish three Lemmata which

together prove proposition 7.

Lemma A.1 There cannot exist a fully pooling equilibrium.

Proof: To sustain a fully pooling equilibrium, i.e. an equilibrium where no information is released,

the sender would have to send the same message at every possible health state pair (H1, H2)

or randomise over the same messages. Thus, financial markets would believe that µ1 = E(H1),

µ2 = E(H2). The only message which can implement full pooling, i.e. that can be sent from all

health state pairs, is {0, p, p; 0, p, p}, i.e. both hurdles are set at zero and all banks pass relative

to both hurdles.

This candidate equilibrium never is an equilibrium because the sender has a strictly beneficial

deviation at some health state pairs. This deviation is beneficial for any interpretation rule

which receivers could use. For example, at (H1 = 1, H2 = 1), the sender can truthfully send

{1, p, p; 1, p, p}. As this message is true if and only if H1 = 1, H2 = 1, receivers must interpret it

as µ1 = 1, µ2 = 1. The sender with objectives V (µ1, µ2) always benefits from this deviation since
∂V
∂µi

> 0 ∀ i and 1 > E(Hi) ∀ i. Q.E.D.

Lemma A.2 There cannot exist a partially pooling equilibrium.

Proof: In any partially pooling equilibrium42 the central bank has to send the same message for

all health state pairs which are part of the pool or randomise over the same messages. Let Ω

denote the set of health state pairs (H1, H2) which form the pool. First, we outline how such a

pool could be implemented. Then, we show that for every pool and every implementation the

sender has a strictly beneficial deviation.

42A partially pooling equilibrium is an equilibrium where receivers do not learn (H1, H2) perfectly, but learn
that it is in a subset of the state space.
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How could a pool be implemented? Define H̄ to be the highest health level in the pool Ω,

that is:

H̄ = max
[

sup
H1∈Ω

H1, sup
H2∈Ω

H2

]
(11)

and H to be lowest health level in the pool:

H = min
[

inf
H1∈Ω

H1, inf
H2∈Ω

H2

]
(12)

Such a pool can be implemented by choosing hurdles s1, s2 which are not in the interval [H, H̄].

If at least one hurdle was in the interval, this would reveal information and destroy the pool.

Having outlined all possible implementations of a pool, we proceed to show that for every

pool and every implementation, it is always possible for the central bank to deviate and benefit

strictly. Hence, no partially pooling equilibrium can exist.

We introduce the term “truthful pay-off” and define it as the pay-off the central bank would

achieve if health state pairs were perfectly revealed. That is, the truthful pay-off at (H1, H2) is

V (H1, H2).

Sublemma A.1 A pool across different truthful pay-offs never exists.

In every pool Ω, there exists a maximum truthful pay-off set M , which is the set of health

state pairs that achieve the highest truthful pay-off. Denote one such health state pair (m,n).

The central bank strictly benefits from deviating from the pool at (m,n) and can feasibly do

so. Suppose without loss of generality that m > n. The central bank can deviate by sending

{s1 = m, p, f ; s2 = n, p, p}. This must be a deviation as it cannot be the implementation of

pool Ω. Financial markets know that the health state pair must be to the top-right of (m,n),

i.e. that H1 ≥ m and H2 ≥ n. For any belief financial markets hold over the states supporting

this message, the central bank is strictly better off than when sending the pooling message and

pooling in Ω. This is depicted in Figure 5b.
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Figure 5: A Beneficial Deviation from Partial Pooling Always Exists

(a) A Candidate Partially Pooling Equilibrium

H1

H2

H

H̄

Ω

(b) Beneficial Deviation

H1

H2

n

m

Ω

Θ

Note: Ω is the set of health state pairs which constitute the pool. Only si /∈]H, H̄] implement the pool.

(m,n) ∈M . Θ is the set of health state pairs at which it is feasible to send message {s1 = m, p, f ; s2 = n, p, p}.

Importantly, even for the worst possible interpretation about where the deviation to {s1 =

m, p, f ; s2 = n, p, p} comes from, the deviation is still a strict improvement for the central bank.

Hence, no partially pooling equilibrium across different truthful pay-off pairs can exist. Q.E.D.

Sublemma A.2 A pool of different health state pairs with the same truthful pay-off never exists.

It is not possible that health state pairs with the same truthful pay-off form a pool because

there does not exist a message which is i) feasible at health state pairs with the same truthful

pay-off and which is ii) not feasibly at health state pairs with a lower truthful pay-off.

Let (Ha
1 , H

a
2 ) and (Hb

1, H
b
2) have the same truthful pay-off. Any message with sj ∈

] min(Ha
i , H

b
i ),max(Ha

i , H
b
i )] allows receivers to distinguish between state Ha

i and state Hb
i .

Thus, the only feasible messages which implement the pool have sj ≤ min(Ha
1 , H

b
1, H

a
2 , H

b
2) or

sj > max(Ha
1 , H

b
1, H

a
2 , H

b
2).43

However, all messages which implement the pool are also feasible at any (Hc
1, H

c
2) where

Hc
i ∈ [min(Ha

1 , H
b
1, H

a
2 , H

b
2),max(Ha

1 , H
b
1, H

a
2 , H

b
2)] ∀i = 1, 2. Some (Hc

1, H
c
2) must have lower

truthful pay-offs than (Ha
1 , H

a
2 ). To see this, recall that V (µ1, µ2) is concave. Thus, if Ha

1 > Hb
1

and (Ha
1 , H

a
2 ) has the same truthful pay-off as (Hb

1, H
b
2), we must have Ha

2 < Hb
2. Thus Hc

1 = Hb
1

and Hc
2 = Ha

2 must have a lower truthful pay-off than (Ha
1 , H

a
2 ), but at (Hc

1, H
c
2) it is feasible to

send any message that could implement the pool of (Ha
1 , H

a
2 ) and (Hb

1, H
b
2).

Thus, any message which can implement a pool across health state pairs with the same

truthful pay-off is also feasible at some health state pairs with a lower truthful pay-off. Hence,

43It is also possible that s1 satisfies one inequality and s2 the other.
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there cannot exist an equilibrium where health state pairs with the same truthful pay-off pool

as there will always exist health state pairs with a lower truthful pay-off at which the CB can

feasibly deviate to the pooling message. Moreover, any such deviation is beneficial since no

alternative way to achieve a pay-off higher than the truthful pay-off can exist (see Sublemma A.1

above). Q.E.D.

Lemma A.3 A fully revealing equilibrium exists.

Proof: When the sender uses as many hurdles as there are banks, a fully revealing equilibrium is

feasible. In the two bank case, the sender can choose s1 = H1, s2 = H2 and receivers interpret it

as µ1 = H1, µ2 = H2, since every message is sent from a unique health state pair. No beneficial

deviation exists for the sender since messages which would be interpreted more favourably (higher

levels of stress, banks still passing) are not true. Q.E.D.

Combining the three lemmata above proves proposition 7. Q.E.D.

B Equilibrium in the Hurdle Rate Communication Game

B.1 Proof of Theorem 1: Existence

The collection {S,R} specified in Theorem 1 is an equilibrium of the Hurdle Rate communication

game if and only if conditions (i) and (ii) defined in Definition 1 both hold. We prove these in

turn, using the logic of revealed preference. As in Theorem 1, we allow bank health distributions

to be any distributions and to differ across banks. We denote the CDFs as F (H1) and G(H2)

respectively.

Condition (i): The interpretation rule R means that, for a given outcome pair {o1, o2}, higher

levels of stress result in higher beliefs µi for both banks. Since M is strictly increasing in µi ∀ i,
we have:

Lemma B.1 Given the interpretation rule R, the CB always prefers the highest level of stress

possible for a given outcome pair to any alternative level of stress for that outcome pair.

Formally, this means that the CB strictly prefers {min(H1, H2), p, p} to all {s′, p, p} where

s′ < min(H1, H2); the CB strictly prefers {H1, p, f} to all {s′′, p, f} where s′′ < H1; the CB

strictly prefers {H2, f, p} to all {s′′′, f, p} where s′′′ < H2.

Proof: Since M is strictly increasing in µi and R specifies that µi are increasing in s for a given

outcome pair, this Lemma holds. Q.E.D.

Lemma B.1 means that the CB chooses either s = max(H1, H2) or s = min(H1, H2) in response

to interpretation rule R. We proceed by showing that the sets of health state pairs (H1, H2)

where a given {s, o1, o2} is sent can be expressed via indifference frontiers x(H2) and y(H2) as in

Theorem 1.
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Lemma B.2 If, at a health state pair (H1, H2) with H2 > 0, sending {H1, p, f} is the message

which maximises the CB’s mandate M, then for all (H1, H
′
2) with H ′2 < H2 it is mandate

maximising to send {H1, p, f}.

Proof: At (H1, H2), {H1, p, f} was revealed preferred to {H2, p, p}, i.e. V ({H1, p, f}) >

V ({H2, p, p}). Given the interpretation rule R, {H2, p, p} results in higher beliefs µi about

both banks than {H ′2, p, p} and thus V ({H2, p, p}) > V ({H ′2, p, p}). Hence, {H1, p, f} must be

preferred to {H ′2, p, p}, i.e. V ({H1, p, f}) > V ({H ′2, p, p}). Q.E.D.

Lemma B.3 If, at a health state pair (H1, H2), sending {H1, p, f} is the message which max-

imises the CB’s mandate M, then for all (H ′1, H2) with H ′1 > H1 it is mandate maximising to

send {H ′1, p, f}.

Proof: (Analogous to the proof of Lemma B.2) Revealed: V ({H1, p, f}) > V ({H2, p, p}). Given

R, {H ′1, p, f} results in higher µi for both banks than {H1, p, f}. Thus, V ({H ′1, p, f}) >

V ({H1, p, f}). Hence, we must have V ({H ′1, p, f}) > V ({H2, p, p}). Q.E.D.

Lemma B.4 There never exists a perfectly vertical part of the x(H2) indifference frontier.44

Proof by contradiction: Suppose a perfectly vertical part of the x(H2) indifference frontier

existed. Then, on this part, there would be at least two health state pairs, (Hb
1, H2) and

(Ha
1 , H2) with Ha

1 > Hb
1, at which the sender is indifferent between {H2, p, p} and respectively

{Ha
1 , p, f} or {Hb

1, p, f}. Thus V ({Hb
1, p, f}) = V ({H2, p, p}) and V ({Ha

1 , p, f}) = V ({H2, p, p})
must both hold. Therefore, we must have V ({Ha

1 , p, f}) = V ({Hb
1, p, f}). But this con-

flicts with the interpretation rule R. Specifically, given R, {s, p, f} results in higher µi than

{s′, p, f} ∀ s > s′ and ∀µi (monotonicity property). Thus, since ∂V (µ1,µ2)
∂µi

> 0∀i, R ensures that

V ({Ha
1 , p, f}) > V ({Hb

1, p, f}) and therefore no perfectly vertical part of the x(H2) indifference

frontier can exist. Q.E.D.

Proof of condition (i): Lemma B.1 means that the CB chooses either s = max(H1, H2) or

s = min(H1, H2). Lemma B.2 - B.3 showed that the health state pairs at which the CB sends

{H1, p, f} form a connected set in the top left part of the state space (H1, H2) ∈ [0, 1]2. Lemma

B.4 showed that this connected set does not have a perfectly vertical boundary. The boundary

also cannot be decreasing. Thus, given R, the CB’s optimal strategy is the strategy described in

Theorem 1, i.e. sending sending {H1, p, f} for all (H1, H2) above an x(H2) indifference frontier

which is monotonically increasing. Q.E.D.

Condition (ii) : Given the strategy S, the interpretation rule is correct in the sense of using all

available information. Naive interpretations of {s, p, p} would result in µ1 = E[H | s ≤ H ≤ 1].

Partially sophisticated interpretations would realise that s = min(H1, H2) and result in µ1 =

α s + (1 − α) EF [H | s ≤ H ≤ 1]. Fully sophisticated beliefs realise that s = min(H1, H2)

44The same logic applies to horizontal parts of y(H2).
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and additionally that the sender preferred s = min(H1, H2) to s = max(H1, H2). Thus, fully

sophisticated beliefs result in µ1 = α s+ (1− α) EF [H | s ≤ H ≤ x(s)] which corresponds to the

beliefs in Theorem 1. Q.E.D.

B.2 Proof of Theorem 2: Uniqueness and Monotonicity

To prove Theorem 2, we first characterise an alternative weak PBE which exists but violates

monotonicity. Then, we prove that the equilibrium described in Theorem 1 is the unique weak

PBE which satisfies monotonicity.

An Alternative Equilibrium which Violates Monotonicity

Lemma B.5 The following actions and beliefs can constitute an equilibrium of the hurdle rate

communication game.

s = H1 iff H1 > x(H2) → {H1, p, f}
s = H2 iff y(H2) > H1 → {H2, f, p}
s = min(H1, H2) iff x(H2) ≥ H1 ≥ y(H2) and

either min(H1, H2) < κ1 or min(H1, H2) ≥ κ2 → {min(H1, H2), p, p}
s = κ1 iff x(H2) ≥ H1 ≥ y(H2) and

κ1 ≤ min(H1, H2) < κ2 → {κ1, p, p}

where x(H2) and y(H2) have the same properties as in the equilibrium described in Theorem 1.

Recipients form beliefs accordingly. Denoting the set of health state pairs from which {κ1, p, p}
is sent as Ω, and assuming that bank health distributions are identical, beliefs are given by:

{s, p, f} is interpreted as µ1 = s; µ2 = E[H | H < x−1(s)]

{s, f, p} is interpreted as µ2 = s; µ1 = E[H | H < y(s)]

{s, p, p} if s < κ1 or s > κ2 is interpreted as µ1 = µ2 = 1
2 s+ 1

2 E[H | s ≤ H ≤ x(s)]

if κ1 < s < κ2 is interpreted as µ1 = µ2 = s

if s = κ1 is interpreted as µ1 = µ2 = E[H | (H1, H2) ∈ Ω]

{s, f, f} is interpreted as µ1 = µ2 = 0 ∀ s > 0

The messages {s, p, p} for κ1 < s < κ2 are never sent in equilibrium. A PBE therefore implies no

restrictions on how these messages are interpreted other than that beliefs are formed over health

state pairs from which the message could have been sent. In this alternative equilibrium, these

messages are interpreted in the most sceptical way possible. Diagrammatically:
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Figure 6: Alternative Equilibrium: Communication Strategy

H1

H2

x(H2)

y(H2)

{H1, p, f}

{s, p, p}

{H2, f, p}

µ2
κ1κ2

κ1

κ2 {κ1, p, p}

Proof: We prove the possibility that such an equilibrium can exist by example. Let κ1 = 0.6,

κ2 = 0.65 and F (H) = H, G(H) = H. For these values we have µ1 = µ2 = E[H | (H1, H2) ∈
Ω] = 431

600 ≈ 0.718.

Condition (i): No beneficial deviation exists for the CB: Focus on the region where min(H1, H2) ∈
[κ1, κ2[. For other regions, e.g. the indifference frontiers x(H2), y(H2), the proof of Theorem 1

applies. For min(H1, H2) < κ1 and health state pairs where the CB sets s = max(H1, H2), it is

technologically not possible to deviate to {κ1, p, p}. For min(H1, H2) ≥ κ2 it is possible but not

optimal to deviate from {min(H1, H2), p, p} to {κ1, p, p}. To see this, consider min(H1, H2) = κ2.

Then {κ2, p, p} results in µ1 = µ2 = 1
20.65 + 1

2E[H | H > 0.65] = 0.7375. As {κ1, p, p} results

in µ1 = µ2 = 0.718, the deviation to {κ1, p, p} is suboptimal. The same logic applies to all

min(H1, H2) > κ2.

For min(H1, H2) ∈ [κ1, κ2[ it is optimal to send {κ1, p, p}. Alternative messages {s, p, p}
where s < κ1 result in lower sender pay-off V (µ1, µ2) as both µ1 and µ2 are lower; where s > κ2

these messages are technologically available. When deviations to {s, p, p} with s ∈ [κ1, κ2[ are

available, these are also not optimal as the resulting beliefs µ1 = µ2 = s are always strictly below

the beliefs resulting from {κ1, p, p}, i.e. µ1 = µ2 = E[H | (H1, H2) ∈ Ω] = 431
600 ≈ 0.718. Messages

of the form {s, p, f} are available, but have been revealed to result in lower sender pay-offs than

{s, p, p} with s below but close to κ1.

Condition (ii): is also satisfied. This concludes the proof of Lemma B.5. Q.E.D.

Lemma B.6 The equilibrium characterised in Lemma B.5 violates monotonicity.

Proof: In this equilibrium, {0.6, p, p} is interpreted as µ1 = µ2 = E[H | (H1, H2) ∈ Ω] = 431
600 ≈

0.718. The off-equilibrium path message {0.61, p, p} is interpreted as µ1 = µ2 = 0.61. This

violates monotonicity which requires that passing a tougher stress test results in higher beliefs

µi. Q.E.D.
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Uniqueness Given Monotonicity

To prove that the equilibrium characterised in Theorem 1 is the unique weak PBE which satisfies

monotonicity, we show that, for any interpretation rule R which results in beliefs that satisfy

monotonicity, the CB’s optimal strategy is unique and always identical to the strategy specified

in Theorem 1. The proof is completed by the argument that the beliefs specified in Theorem 1

are the unique set of beliefs consistent with the CB’s strategy.

Lemma B.7 For any interpretation rule R which results in beliefs that satisfy monotonicity, the

CB always prefers the highest level of stress possible for a given outcome pair to any alternative

level of stress for that outcome pair.

Formally, this means that the CB strictly prefers {min(H1, H2), p, p} to all {s′, p, p} where

s′ < min(H1, H2), the CB strictly prefers {H1, p, f} to all {s′′, p, f} where s′′ < H1, the CB

strictly prefers {H2, f, p} to all {s′′′, f, p} where s′′′ < H2.

Proof: Since M is strictly increasing in µi and by monotonicity µi is increasing in s for a given

outcome pair, this Lemma holds. Q.E.D.

Lemma B.7 means that the CB chooses either s = max(H1, H2) or s = min(H1, H2). We proceed

by showing that the sets of health state pairs (H1, H2) where a given {s, o1, o2} is sent can be

expressed via indifference frontiers x(H2) and y(H2) as in Theorem 1.

Lemma B.8 If, at a health state pair (H1, H2) with H2 > 0, sending {H1, p, f} is the message

which maximises the CB’s mandate M, then for all (H1, H
′
2) with H ′2 < H2 it is mandate

maximising to send {H1, p, f}.

Proof: At (H1, H2), {H1, p, f} was revealed preferred to {H2, p, p}, i.e. V ({H1, p, f}) >

V ({H2, p, p}). Given beliefs satisfy monotonicity, {H2, p, p} results in higher beliefs µi about

both banks than {H ′2, p, p} and thus V ({H2, p, p}) > V ({H ′2, p, p}). Hence, {H1, p, f} must be

preferred to {H ′2, p, p}, i.e. V ({H1, p, f}) > V ({H ′2, p, p}). Q.E.D.

Lemma B.9 If at a health state pair (H1, H2) sending {H1, p, f} is the message which maximises

the CB’s mandate M, then for all (H ′1, H2) with H ′1 > H1 it is mandate maximising to send

{H ′1, p, f}.

Proof: (Analogous to the proof of Lemma B.8) Revealed: V ({H1, p, f}) > V ({H2, p, p}). For

beliefs which satisfy monotonicity, {H ′1, p, f} results in higher µi for both banks than {H1, p, f}.
Thus, V ({H ′1, p, f}) > V ({H1, p, f}). Hence, V ({H ′1, p, f}) > V ({H2, p, p}). Q.E.D.

Lemma B.10 There never exists a perfectly vertical part of the x(H2) indifference frontier.45

45The same logic applies to horizontal parts of y(H2).
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Proof by contradiction: Suppose a perfectly vertical part of the x(H2) indifference frontier

existed. Then, on this part, there would be at least two health state pairs, (Hb
1, H2) and (Ha

1 , H2)

with Ha
1 > Hb

1, at which the sender is indifferent between {H2, p, p} respectively {Ha
1 , p, f} or

{Hb
1, p, f}. Thus V ({Hb

1, p, f}) = V ({H2, p, p}) and V ({Ha
1 , p, f}) = V ({H2, p, p}) must both

hold. Therefore, we must have V ({Ha
1 , p, f}) = V ({Hb

1, p, f}). But this conflicts with beliefs

satisfying monotonicity. For beliefs which satisfy monotonicity {s, p, f} results in higher µi than

{s′, p, f} ∀s > s′ and ∀µi. Thus, since ∂V (µ1,µ2)
∂µi

> 0∀i, monotonicity of beliefs ensures that

V ({Ha
1 , p, f}) > V ({Hb

1, p, f}) and therefore no perfectly vertical part of the x(H2) indifference

frontier can exist. Q.E.D.

Lemma B.7 means that the CB chooses either s = max(H1, H2) or s = min(H1, H2). Lemma B.8

- B.9 showed that the health state pairs at which the CB sends {H1, p, f} form a connected set

in the top left part of the state space (H1, H2) ∈ [0, 1]2. Lemma B.10 showed that this connected

set does not have a perfectly vertical boundary. The boundary also cannot be decreasing. Thus,

when beliefs satisfy monotonicity, the CB’s optimal strategy is unique and always identical to

the strategy specified in Theorem 1. Q.E.D.

C Proof of Propositions

C.1 Proof of Proposition 1: Ordering Designs by Reassurance

Lemma C.1 The Zero Disclosure Framework generates E[min(µ1, µ2)] = E[H].

Proof: Since in ZDF never any information is released, recipients can never update their beliefs

from their prior E[Hi]. Thus, beliefs are always µi = E[Hi] and therefore E[min(µ1, µ2)] =

E[min(E(H),E(H))] = E[H]. Q.E.D.

Lemma C.2 The Full Disclosure Framework generates E[min(µ1, µ2)] = E[min(H1, H2)].

Proof: Since in FDF health realisations Hi are always fully revealed, recipients update their

belief to the true fundamental: µi = Hi. Thus, the entire distribution of fundamentals and

beliefs coincide, not just the mean (Bayes plausibility). Hence, E[min(µ1, µ2)] = E[min(H1, H2)].

Q.E.D.

ZDF always generates more reassurance than FDF as E[H] ≥ E[min(H1, H2)] holds for all

distributions.46

Lemma C.3

(i) For all mandates M, the Hurdle Rate Framework generates a level of reassurance that lies

between the levels of FDF and ZDF.

46When bank health is drawn from a uniform distribution, E[H] = 1
2
> 1

3
= E[min(H1, H2)].
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(ii) The level of reassurance in a HRF is monotonically increasing in the weight the mandate

places on the weak bank.

Proof: We know from (5) that the x(H2) indifference frontier is x(H2) = 2−ω
1−2ωH2 when

V (µ1, µ2) = ω min(µ1, µ2) + (1 − ω) µ1+µ2
2 where ω ∈ [0, 1[ and Hi ∼ U [0, 1] ∀ i. For ease

of exposition, we define m ≡ 2−ω
1−2ω . Since ω ≥ 0, our parameter space is m ≥ 2. There is a

one-for-one mapping between m and ω, ω = m−2
2m−1 . Using the resulting x(H2) = mH2 in (8),

reassurance in a HRF is:

E[min(µ1, µ2)] =

∫ 1
m

0

[ H2
2

2m2
+

3 +m

8
(
m2 − 1

m2
)H2

2 +
3 +m

4
(m− 1)H2

2 +
1

4m
− m

4
H2

2

]
g(H2)dH2

+

∫ 1

1
m

[ H2
2

2m2
+

3

8
(
m2 − 1

m2
)H2

2 +
1

4
(
m− 1

m
)H2 +

1

4
− 3

4
H2

2 +
1

2
H2

]
g(H2)dH2

(13)

which simplifies to:

E[min(µ1, µ2)] =
1

2
+
−7m3 +m2 + 3m− 1

24m4
(14)

From (14), we establish three sublemmata which together prove Lemma C.3.

Sublemma C.1 Even when the sender’s mandate is concerned only with average bank health, a

hurdle rate framework implies more reassurance than the full disclosure framework.

Proof: Using that the mandate is concerned only with average bank health (ω = 0 or equally

m = 2) in (14), we obtain E[min(µ1, µ2)] = 145
384 ≈ 0.378. In FDF, using Lemma C.2 and the

distributional assumption, E[min(µ1, µ2)] = E[min(H1, H2)] = 1
3 , which is below reassurance in a

HRF. Q.E.D.

Sublemma C.2 The stronger the weight the mandate places on the weak bank, the more reas-

surance is provided in equilibrium.

Proof: We aim to show that dE[min(µ1,µ2)]
dω ≥ 0 ∀ ω ∈ [0, 1[. This corresponds to showing that

dE[min(µ1,µ2)]
dm ≥ 0 ∀ m ≥ 2. From (14) we obtain:

dE[min(µ1, µ2)]

dm
=

7m3 − 2m2 − 9m+ 4

24m5
(15)

and
d2E[min(µ1, µ2)]

dm2
=
−7m3 + 3m2 + 18m− 10

12m6
(16)

Solving maxm E[min(µ1, µ2)] yields the FOC dE[min(µ1,µ2)]
dm

!
= 0 which is satisfied for m = 1 and

for two lower values of m. The SOC confirms that m = 1 is indeed a minimum. Thus, for all

m > 1 we have dE[min(µ1,µ2)]
dm > 0. Hence, reassurance is monotonically increasing in m for all

m ≥ 2. Q.E.D.

Sublemma C.3 As the weight the mandate places on the weak bank increases, the amount of

reassurance provided by a HRF approaches, but never exceeds, that of ZDF.
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Proof: Higher ω result in higher m. In the extreme case (m→∞), the CB almost always sends

{min(H1, H2), p, p}. Only if min(H1, H2) = 0, does the CB let the weak bank fail the test. To

characterise reassurance in the limit case, apply limit theorems to (14):

lim
m→∞

E[min(µ1, µ2)] = lim
m→∞

(
1

2
) + lim

m→∞
(
−7m3 +m2 + 3m− 1

24m4
) =

1

2
(17)

From Lemma C.1 we know that for ZDF E[min(µ1, µ2)] = E[min(H1, H2)] = 1
2 . Thus, E[min(µ1, µ2) |

HRF,m→∞] = E[min(µ1, µ2) | ZDF ]. Q.E.D.

Note that, given our definition of reassurance, this limit result focuses on the first moment

of the distribution of min(µ1, µ2) and finds that the first moment in the extreme HRF equals

that in ZDF. However, higher moments differ. In ZDF, minimum beliefs have a degenerate

distribution (min(µ1, µ2) = E[Hi]), while in the extreme HRF the distribution of min(µ1, µ2)

has full support on the unit interval. Thus, under a broader definition of reassurance which

includes higher moments we expect that the extreme HRF provides strictly less reassurance

than ZDF. As both the ranking of frameworks in terms of reassurance and the ranking of man-

dates within HRF remain unaffected, our results on optimal institution design would remain valid.

Proof of Lemma C.3: Combining Sublemmata C.1, C.2, C.3 proves Lemma C.3. Q.E.D.

Proof of Proposition 1: Combining Lemmata C.1, C.2, C.3 proves Proposition 1. Q.E.D.

C.2 Proof of Proposition 2: Comparative Static on the Sender’s Mandate

Let there be two mandates V (µ1, µ2) and U(µ1, µ2) where U(µ1, µ2) is more concerned with the

weak bank, i.e. is more concave. Let the equilibrium in the communication game for V (µ1, µ2) be

characterised by indifference frontier x(H2) and the interpretation rule R while the equilibrium for

U(µ1, µ2) is characterised by x̃(H2) and R̃. On x(H2) we have that V ({H1, p, f}) = V ({H2, p, p}).
Given the interpretation rule R, {H2, p, p} results in µ1 = µ2 while {H1, p, f} results in dispersed

posteriors µ′1 6= µ′2. Moreover, µ′2 < µ1 = µ2 < µ′1. Therefore, a CB with mandate U(µ1, µ2),

which places more weight on the weak bank than V (µ1, µ2), strictly prefers {H2, p, p} on x(H2)

for interpretation R. For interpretation rule R, U(µ1, µ2) strictly prefers {H2, p, p} to {H1, p, f}
for all (H1, H2) between the 45-degree line and the x(H2)-frontier. Thus, the hypothetical frontier

x̄(H2), at which a CB with U(µ1, µ2) is indifferent between {H1, p, f} and {H2, p, p} given R,

must lie strictly above x(H2). However, x̄(H2) does not characterise an equilibrium as it is based

on R rather than the appropriate R̃. Allowing the interpretation rule to adjust to R̃ results in

U(µ1, µ2) strictly preferring {H2, p, p} also on x̄(H2). Thus, the resulting equilibrium indifference

frontier x̃(H2) must lie above x̄(H2). Since x̃(H2) > x̄(H2) ∀ H2 and x̄(H2) > x(H2) ∀ H2, we

have that x̃(H2) > x(H2) ∀ H2. Q.E.D.
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C.3 Proof of Proposition 3: Ordering Designs by Incentives

Recall that low effort leads to bank health being drawn from CDF G(H) and high effort from

F (H).

Lemma C.4 The Zero Disclosure Framework generates no incentives.

Proof: Since in ZDF never any information is released, recipients can never update their prior on

bank health. This means that the expected belief is fully determined by conjectured effort and

unaffected by actual effort. Formally E
[
µ1(l) | h1, l2

]
= E

[
µ1(l) | l1, l2

]
= EG[H]. Q.E.D.

Lemma C.5 The Full Disclosure Framework generates full incentives.

Proof: Since in FDF health realisations Hi are always fully revealed, recipients update their

belief to the true fundamental: µi = Hi. Hence, E
[
µ1(l) | h1, l2

]
= EF [H]. Thus, incentives are

EF [H]− EG[H] which is strictly positive by the MLRP ordering. Q.E.D.

Lemma C.6

(i) For all mandates M, the Hurdle Rate Framework generates incentives. These incentives

have a strength between that of ZDF and HRF.

(ii) The strength of incentives in a HRF is monotonically decreasing in the weight the mandate

places on the weak bank.

Proof: We know from (5) that the x(H2) indifference frontier is x(H2) = 2−ω
1−2ωH2 when

V (µ1, µ2) = ω min(µ1, µ2) + (1 − ω) µ1+µ2
2 where ω ∈ [0, 1[, G(H) = H, F (H) = H2, and

the regulator conjectures that banks choose low effort. Analogous to Appendix C.1, using the

resulting x(H2) = mH2 in (10), we have that for an HRF:

E
[
µ1(l) | h1, l2

]
=

∫ 1
m

0

[
H2

2m
F (
H2

m
) +

3 +m

4

∫ H2

H2
m

H1f(H1)dH1

+
3 +m

4
H2[F (mH2)− F (H2)] +

∫ 1

x(H2)
H1f(H1)dH1

]
g(H2)dH2

+

∫ 1

1
m

[
H2

2m
F (
H2

m
) +

∫ H2

H2
m

1

4
+

3

4
H1f(H1)dH1

+
(1

4
+

3

4
H2

)(
1− F (H2)

)]
g(H2)dH2

(18)

and

E
[
µ1(l) | h1, l2

]
=

1

48m6

(
27m6 + 15m5 − 13m4 −m3 + 4m− 2

)
(19)

From (19), we establish three sublemmata which together prove Lemma C.6.

41



Sublemma C.4 When the mandate is concerned only with average bank health, a HRF generates

incentives with a strength strictly between that of ZDF and FDF.

Proof: Using that M is only concerned with average bank health (m = 2) in (19), we obtain

E
[
µ1(l) | h1, l2

]
= 333

512 . In FDF, using Lemma C.5 and the distributional assumptions, E
[
µ1(l) |

h1, l2
]

= EF [H] = 2
3 and in ZDF, using Lemma C.4, E

[
µ1(l) | h1, l2

]
= EG[H] = 1

2 . Hence,

EG[H] < E
[
µ1(l) | h1, l2, HRF

]
< EF [H] and thus effort incentives in a HRF are strictly positive

(more than in ZDF) but less than in FDF. Q.E.D.

Sublemma C.5 Incentives are monotonically decreasing in the weight the mandate places on

the weak bank.

Proof: We aim to show that E
[
µ1(l) | h1, l2

]
− EG[H] is decreasing in ω ∈ [0, 1[. Since EG[H] is

independent of M, this is equivalent to showing that E
[
µ1(l) | h1, l2

]
is decreasing in m for all

m ≥ 2. From (19) we obtain:

dE
[
µ1(l) | h1, l2

]
dm

=
−15m5 + 26m4 + 3m3 − 20m+ 12

48m7
(20)

For our entire parameter space (m ≥ 2), this expression is negative. Q.E.D.

Sublemma C.6 For all M, a Hurdle Rate Framework creates strictly positive incentives. Even

when the sender is purely concerned with the weak bank, incentives remain strictly positive.

Proof: If the mandate is purely concerned with the weak bank (ω = 1), then m→∞. The limit of

(19) becomes limm→∞ E
[
µ1(l) | h1, l2

]
= 9

16 . Thus, limm→∞ E
[
µ1(l) | h1, l2

]
− EG[H] > 0 which

means that incentives are strictly positive. Since by Sublemma C.5 incentives are monotonically

decreasing in ω, all ω ∈ [0, 1[ must have even higher and thus strictly positive incentives. Q.E.D.

Recall that when the sender is purely concerned with the weak bank, then in equilibrium the

sender almost always sends {min(H1, H2), p, p}. The sole exception is when min(H1, H2) = 0

as then s = max(H1, H2) is chosen. This messaging strategy differs from zero disclosure as it

reveals some information (min(H1, H2)). Thus, the messaging strategy generates strictly positive

incentives. Bank i anticipates that the sender chooses s = min(H1, H2) and knows that in some

states min(H1, H2) = Hi. Higher effort by bank i makes higher Hi more likely which makes

more favourable messages more likely and thus increases expected beliefs. Thus, strictly positive

incentives exist.

Proof of Lemma C.6: Combining Sublemma C.4, C.5, C.6 proves Lemma C.6. Q.E.D.

Proof of Proposition 3: Combining Lemma C.4, C.5, C.6 proves Proposition 3. Q.E.D.
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C.4 Proof of Proposition 4: Equilibrium in the Endogenous Effort Game

Proof of Part (i): Since in ZDF never any information is released, receivers can never update

their prior on bank health. This means that the expected belief is fully determined by conjectured

effort and unaffected by actual effort, i.e. E
[
µ1(l) | h1, l2

]
= E

[
µ1(l) | l1, l2

]
= EG[H]. When

banks choose effort ei to maximise E[πi] = E[µi] − C(ei), they anticipate no benefit of high

effort in terms of E[µi] and know that there is a strictly positive cost. Thus, banks choose low

effort independent of the receivers’ conjecture. Thus, there exists a unique equilibrium. In this

equilibrium banks choose low effort and receivers conjecture low effort. Q.E.D.

Proof of Part (ii): In FDF, health realisations Hi are always fully revealed and recipients

thus update their belief to the true fundamental: µi = Hi. Therefore, expected beliefs E[µi]

and expected fundamental health E[Hi | ei] coincide for any effort choice and are unaffected by

conjectured effort. When banks choose effort ei to maximise E[πi] = E[µi]−C(ei), they anticipate

a benefit of high effort in terms of E[µi] that equals the effect of effort on fundamental health

(EF [H]−EG[H]) and weigh it against the strictly positive cost (C(h)−C(l)). Thus, banks exert

high effort iff EF [H]−EG[H] > C(h)−C(l), which holds by the assumption that effort is socially

beneficial. Thus, banks choose high effort independent of the receivers’ conjecture. Hence, there

exists a unique equilibrium. In this equilibrium banks choose high effort and receivers conjecture

high effort. Q.E.D.

Proof of Part (iii):

Lemma C.7 A low effort equilibrium exists if and only if C(h)− C(l) ≥ t̄(M)

Proof: In a HRF, an equilibrium where both banks choose low effort exists only if a bank does

not benefit from unilaterally deviating to high effort, i.e. E
[
µ1(l) | h1, l2

]
−EG[H] ≤ C(h)−C(l).

We know from Proposition 3 that the strength of incentives generated in a HRF depends on the

CB’s mandate. Defining E
[
µ1(l) | h1, l2

]
− EG[H] = t̄(M), the condition above can be restated

as C(h)− C(l) ≥ t̄(M). All other equilibrium conditions are also satisfied. Q.E.D.

Lemma C.8 A high effort equilibrium exists if and only if C(h)− C(l) ≤ t(M).

Proof: In a HRF, an equilibrium where both banks choose high effort exists only if a bank does

not benefit from unilaterally deviating to low effort, i.e. EF [H]−E
[
µ1(h) | l1, h2

]
≥ C(h)−C(l).

The strength of incentives generated in a HRF depends on the CB’s mandate. Defining t(M) =

EF [H] − E
[
µ1(h) | l1, h2

]
, the condition can be restated as C(h) − C(l) ≤ t(M). All other

equilibrium conditions are also satisfied. Q.E.D.

Lemma C.9 t(M) < t̄(M)

When both banks play high effort which results in F (H) = H2, then the hurdle rate com-

munication game for V (µ1, µ2) = µ1+µ2
2 results in x(H2) =

√
3 H2. In the endogenous
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effort game, there exists an equilibrium where both banks play high effort if and only if

C(h) − C(l) ≤ EF [H] − E
[
µ1(h) | l1, h2

]
≈ 0.1285. Correspondingly, both banks playing

low effort results in x(H2) = 2H2 and is an equilibrium if and only if: C(h)− C(l) ≥ E
[
µ1(l) |

h1, l2
]
− EG[H] = 77

512 ≈ 0.1504. Since 0.1285 < 0.1504, Lemma C.9 holds. Q.E.D.

Proof of Part (iii): Since the only candidate symmetric pure strategy equilibria have (l1, l2) or

(h1, h2), combining Lemma C.7, C.8, C.9 proves Part (iii). Lemma C.7 and C.8 show regions in

which (l1, l2) or (h1, h2) equilibria exist and Lemma C.9 shows that the regions of the cost space

in which these equilibria exist are disjoint, leading to a region where no pure stretegy symmetric

equilibrium exists between t(M) and t̄(M). Q.E.D.

C.5 Proof of Proposition 5: The Optimal Mandate

Lemma C.10 If there exists a {HRF,M} which incentivises high effort, then {HRF,M̃}, where

M̃ is the softest possible mandate which just incentivises high effort, achieves higher welfare than

all tougher HRF mandates and than FDF.

Formally, let ω̃ be the softest possible mandate which in a HRF results in high effort, i.e. ω̃ is

defined by C(h)− C(l) = EF [H]− E
[
µ1(h) | l1, h2, ω̃

]
. Then all tougher mandates ω < ω̃ also

result in high effort. Thus, Lemma C.10 states that

EHRF,ω̃[W (µ1, µ2)] > EHRF,ω[W (µ1, µ2)] ∀ ω < ω̃ (21)

and

EHRF,ω̃[W (µ1, µ2)] > EFDF [W (µ1, µ2)] (22)

Proof: FDF, {HRF, ω̃}, and all {HRF, ω} with ω < ω̃ result in high effort. Therefore, for

W (µ1, µ2) = λ min(µ1, µ2) + (1− λ) µ1+µ2
2 with any λ > 0 the welfare ranking of these designs

reduces to a ranking in terms of reassurance, E[min(µ1, µ2)]. From Proposition 1 we know that

FDF provides the lowest reassurance and that in a HRF, reassurance is monotonically increasing

in the softness of the mandate (ω). Thus, equations (21) and (22) hold. Q.E.D.

Lemma C.11 ZDF achieves higher welfare than all hurdle rate frameworks which result in low

effort.

Formally, let ω̄ be the toughest possible mandate which in a HRF results in low effort, i.e. ω̄

is defined by C(h)− C(l) = E
[
µ1(l) | h1, l2, ω̄

]
− EG[H]. Then, all softer mandates ω > ω̄ also

result in low effort. Thus, Lemma C.11 states that

EZDF [W (µ1, µ2)] > EHRF,ω[W (µ1, µ2)] ∀ ω > ω̄ (23)

Proof: ZDF and all {HRF,ω} with ω > ω̄ result in low effort. Therefore, for W (µ1, µ2) =

λ min(µ1, µ2) + (1− λ) µ1+µ2
2 with any λ > 0 the welfare ranking of these designs reduces to a
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ranking in terms of reassurance, E[min(µ1, µ2)]. From Proposition 1 we know that ZDF is the

design which provides the highest reassurance among all designs. Thus, equation (23) holds.

a Q.E.D.

Proof of Proposition 5: Combining Lemma C.10 and Lemma C.11 proves Proposition 5. Q.E.D.

C.6 Proof of Proposition 6: Central Bank Design

Proof of Part (ii): From Proposition 5 we have that, in this case of high effort costs, W ({ZDF}) >
W ({HRF,M}) ∀ M and thus the designer’s choice reduces to a choice among ZDF and FDF.

We also established that ZDF results in a low effort equilibrium. Thus, if the designer chooses

ZDF:

EZDF [W (µ1, µ2)] = EG[H] ∀ λ (24)

We also established that FDF results in a high effort equilibrium. Thus, if the designer chooses

FDF:

EFDF [W (µ1, µ2)] = λ EF [min(H1, H2)]− (1− λ) EF [H] (25)

The designer chooses FDF if and only if

EFDF [W (µ1, µ2)] > EZDF [W (µ1, µ2)] (26)

Let λ∗ denote the value of λ at which (26) holds with equality. Then, the equality can be written

as

λ∗ EF [min(H1, H2)]− (1− λ∗) EF [H] = EG[H] (27)

Which yields:

λ?(a) =
EF [H]− EG[H]

EF [H]− EF [min(H1, H2)]
(28)

Thus, for a given benefit of effort a, at λ < λ?(a) the designer chooses FDF and otherwise ZDF.

For the full characterisation of the optimal central bank design as depicted in Figure 4a note

that since EF [H]− EG[H] > 0 and EF [H]− EF [min(H1, H2)] > 0 always hold, it must be that

λ?(a) > 0. Moreover, if the benefit of effort is so large that EF [min(H1, H2)] > EG[H], then

W ({FDF}) > W ({ZDF}) ∀ λ which gives rise to the top area in Figure 4a where FDF is chosen

for all values of λ. For the functional forms G(H) = H, F (H) = Ha, EF [min(H1, H2)] > EG[H]

holds for a > 1.78. Thus, we consider λ?(a) only for a ∈ [1, 1.78] where a > 1 is needed to

ensure an MLRP ordering of distributions. Over this range, λ?(a) is positive and monotonically

increasing as λ?(a) = −1
2 −

1
2a + a. Thus, the optimal institutional design in the high effort case

is characterised by Figure 4a. Q.E.D.

Proof of Part (i): From Proposition 5 we know that, in this case of low effort costs, W ({HRF, ω̃}) >
W ({HRF, ω}) ∀ ω < ω̃ and W ({HRF, ω̃}) > W ({FDF}). We also know that W ({ZDF}) >
W ({HRF, ω}) ∀ ω > ω̃. Thus, the designer’s choice reduces to a choice among ZDF and

{HRF, ω̃}. As before, EZDF [W (µ1, µ2)] = EG[H] ∀ λ. By construction of ω̃ as the softest
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possible mandate which induces high effort:

EHRF,ω̃[W (µ1, µ2)] = λ EHRF,ω̃[min(µ1, µ2)] + (1− λ) EF [H] (29)

The designer chooses {HRF, ω̃} if and only if:

EHRF,ω̃[W (µ1, µ2)] > EZDF [W (µ1, µ2)] (30)

Let λ′ denote the value of λ at which (30) holds with equality. Then, the equality can be written

as

λ′ EHRF,ω̃[min(µ1, µ2)] + (1− λ′) EF [H] = EG[H] (31)

Which yields:

λ′(a,C) =
EF [H]− EG[H]

EF [H]− EHRF,ω̃[min(µ1, µ2)]
(32)

Thus, for a given benefit of effort a, at λ < λ′(a,C) the designer chooses {HRF, ω̃} and otherwise

ZDF.

For the full characterisation of the optimal central bank design as depicted in Figure 4b note

that λ′(a,C) > 0 always holds. Moreover, comparing λ′(a,C) and λ∗(a) we always have that

λ′(a,C) > λ∗(a), since this equals:

EF [H]− EG[H]

EF [H]− EHRF,ω̃[min(µ1, µ2)]
> λ?(a) =

EF [H]− EG[H]

EF [H]− EF [min(H1, H2)]
(33)

which simplifies to:

EHRF,ω̃[min(µ1, µ2)] > EF [min(H1, H2)] (34)

which holds by the reassurance ranking. Thus, the optimal institutional design in the low effort

case is characterised by Figure 4b. Q.E.D.

The value of λ′(a,C) depends indirectly on the cost of effort. This arises because λ′(a,C)

depends directly on mandate ω̃, that is the softest possible mandate which just induces high

effort, which in turn depends on the cost of effort. If costs of effort are higher, a tougher mandate

is needed to incentivise effort. This corresponds to a smaller value of ω̃. Then, {HRF, ω̃} releases

more information. λ′(a,C) thus becomes steeper, i.e. rotates towards the λ∗(a) line. When costs

of effort become so high that they switch from the low cost of effort to the high cost of effort

regime, then λ′(a,C) becomes λ∗(a) and the design chosen to induce effort switches from being

{HRF, ω̃} to FDF. Q.E.D.
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